Cone Rod Homeobox (): literature review and new insights.

Ophthalmic Genet

Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA.

Published: March 2025

The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox () transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations. Lastly, we discuss implications of these findings in the development of therapies for inherited retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810.2025.2458086DOI Listing

Publication Analysis

Top Keywords

cone rod
8
rod homeobox
8
inherited retinal
8
retinal diseases
8
homeobox literature
4
literature review
4
review insights
4
insights development
4
development neural
4
neural retina
4

Similar Publications

Cone Rod Homeobox (): literature review and new insights.

Ophthalmic Genet

March 2025

Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA.

The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox () transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations.

View Article and Find Full Text PDF

Purpose: To describe a case of SLC37A3-associated retinitis pigmentosa (RP) and associated imaging and electroretinography findings.

Methods: The patient was evaluated at Columbia University Irving Medical Center using a comprehensive multimodal imaging protocol that included color fundus photography, fundus autofluorescence (FAF), and spectral-domain optical coherence tomography. Functional assessments were conducted using full-field electroretinography (ERG), following the ISCEV standard protocols to ensure consistent and reproducible measurements of photoreceptor activity.

View Article and Find Full Text PDF

Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1.

View Article and Find Full Text PDF

The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking.

View Article and Find Full Text PDF

The distribution of stored dietary vitamin A/all-trans-retinol (ROL) from the liver throughout the body is critical for maintaining retinoid function in peripheral tissues and for generating visual pigments for photoreceptor cell function. ROL circulates in the blood bound to the retinol binding protein 4 (RBP4) as RBP4-ROL. Two membrane receptors, RBPR2 in the liver and other non-ocular tissues, and STRA6 in the eye are proposed to bind circulatory RBP4 and this mechanism facilitates the internalization of ROL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!