Increasing collagen synthesis in fibroblasts: The roles of PCL microspheres and the SAMD11-PLOD1 axis in skin rejuvenation.

Biochim Biophys Acta Mol Cell Res

The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China. Electronic address:

Published: March 2025

The degradation of extracellular matrix proteins such as collagen and elastin with aging leads to skin sagging. Polycaprolactone (PCL) microspheres are used as facial fillers because of their ability to provide volume, biodegradability, and collagen-stimulating properties. The direct biological effects of PCL microspheres on fibroblasts, particularly in stimulating sustained collagen production, require further investigation. We detected the safety and effect of PCL microspheres on human fibroblasts and investigated new collagen synthesis and the thickness of C57BL/6 mouse skin. Through an RNA-seq analysis of differentially expressed genes, we identified a key regulator of collagen production in PCL-stimulated fibroblasts. Our research revealed that PCL microspheres are safe for human fibroblasts, promoting their proliferation and increasing new collagen synthesis and skin thickness. We identified sterile alpha motif domain containing 11 (SAMD11) as a key regulator of collagen production in PCLstimulated fibroblasts through an RNA-seq analysis. By increasing SAMD11 expression, PCL microspheres increase collagen synthesis and rejuvenate skin through the upregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1). This study elucidates the mechanism by which SAMD11 regulates the effects of PCL microspheres as collagen stimulants for skin rejuvenation, providing a foundation for the future development and refinement of similar materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2025.119931DOI Listing

Publication Analysis

Top Keywords

pcl microspheres
28
collagen synthesis
16
collagen production
12
increasing collagen
8
skin rejuvenation
8
collagen
8
effects pcl
8
human fibroblasts
8
rna-seq analysis
8
key regulator
8

Similar Publications

Increasing collagen synthesis in fibroblasts: The roles of PCL microspheres and the SAMD11-PLOD1 axis in skin rejuvenation.

Biochim Biophys Acta Mol Cell Res

March 2025

The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China. Electronic address:

The degradation of extracellular matrix proteins such as collagen and elastin with aging leads to skin sagging. Polycaprolactone (PCL) microspheres are used as facial fillers because of their ability to provide volume, biodegradability, and collagen-stimulating properties. The direct biological effects of PCL microspheres on fibroblasts, particularly in stimulating sustained collagen production, require further investigation.

View Article and Find Full Text PDF

Intestinal ischemia/reperfusion (I/R) injury is a common life-threatening condition. Inflammatory dysregulation plays a crucial role in the pathological progression of intestinal I/R injury, indicating that controlling excessive inflammatory responses can be an effective strategy for mitigating I/R injury. Herein, after establishing a correlation between cell-free DNA (cfDNA) levels and postoperative inflammatory factors in samples from patients with intestinal I/R, we tested a cfDNA-scavenging approach for the treatment of intestinal I/R injury.

View Article and Find Full Text PDF

The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production.

View Article and Find Full Text PDF

Background: The reduction in collagen content within the subcutaneous fat layer due to aging results in thinning and weakening of the fibrous septum, leading to an unstable fat pad. Studies on the mechanism of action of polycaprolactone (PCL) collagen stimulators in the adipose layer are lacking.

Objectives: This research aimed to explore the effectiveness of PCL-based filler in enhancing the fibrous septum within adipose tissue, thereby facilitating collagen and elastin synthesis in the adipose layer, while also comparing the disparities in the process between juvenile and aged individuals.

View Article and Find Full Text PDF

Electrosprayed core-shell microspheres co-deliver fibronectin and resveratrol for combined treatment of acute lung injury.

J Colloid Interface Sci

May 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620 China; CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada 9020-105 Funchal, Portugal. Electronic address:

The facile development of advanced formulations capable of scavenging excess reactive oxygen species (ROS) and sustainably inhibiting inflammatory cytokine secretion is imminent for effective treatment of acute lung injury (ALI), but still remains a great challenge. This study presents an innovative core-shell carrier system via electrospray technology, characterized by a shell of poly(lactic acid-co-glycolic acid) (PLGA) and a core consisting of polycaprolactone-polyethylene glycol (PCL-PEG) micelles encapsulating resveratrol (Res), and surface modified with fibronectin (FN). The created drug-loaded core-shell microspheres (for short, RPG@FN) with a size of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!