Mitochondrial dysfunction is a hallmark in the pathogenesis of various cardiovascular diseases. 5-Methoxytryptophan (5-MTP), an intrinsic amino acid metabolite, exerts cardioprotective effects potentially through the preservation of mitochondrial integrity. This study investigates the mechanisms and contexts in which 5-MTP positively impacts mitochondrial function using cultured human ventricular cardiomyocytes (HCMs) and HL-1 cardiac cells subjected to oxidative stress (OS). We first demonstrated that 5-MTP up-regulates the expression of PINK1, a key regulator of mitochondrial homeostasis. PINK1 knockdown attenuated the beneficial effects of 5-MTP on cardiomyocyte apoptosis. Furthermore, in cells exposed to OS, 5-MTP pretreatment led to a notable decrease in mitochondrial superoxide generation. Fluorescence imaging and network analysis showed that 5-MTP preserved mitochondrial membrane potential and enhanced mitochondrial network integrity. The reduction in the phosphorylation of dynamin-related protein 1, which is involved in mitochondrial fission, uncovered the role of 5-MTP in maintaining mitochondrial dynamics. Notably, 5-MTP attenuated OS-induced mitophagy, as evidenced by reduced mitophagy detection dye fluorescence and lower mitochondrial Parkin levels, suggesting that mechanisms beyond the PINK1/Parkin pathway are involved. Restoration of AKT phosphorylation and reduced mitochondrial Bax localization further revealed an additional pathway contributing to mitochondrial protection. Moreover, 5-MTP attenuated pro-apoptotic Bax levels and enhanced PINK1 expression in a rat model of ischemic cardiomyopathy, corroborating its cardioprotective role. Collectively, these findings demonstrate that 5-MTP mitigates mitochondrial dysfunction by integrating the roles of PINK1, AKT, and Bax, offering potential as a therapeutic agent to enhance cellular resilience in OS-driven mitochondrial damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2025.03.010DOI Listing

Publication Analysis

Top Keywords

mitochondrial
15
5-mtp
10
mitigates mitochondrial
8
mitochondrial damage
8
mitochondrial dysfunction
8
5-mtp attenuated
8
pink1
5
5-methoxytryptophan attenuates
4
attenuates oxidative
4
oxidative stress-induced
4

Similar Publications

The IL-6 axis in vascular inflammation: effects of IL-6 receptor blockade on vascular lesions from patients with giant-cell arteritis.

Ann Rheum Dis

March 2025

Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic (member of European Reference Network [ERN]-for rare diseases RITA), University of Barcelona, Centre de Recerca biomèdica (CRB)-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Electronic address:

Objectives: Blocking interleukin (IL)-6-receptor with tocilizumab has been a major advance in the treatment of giant-cell arteritis (GCA), supporting a crucial role of IL-6 receptor signalling. However, nearly half of the patients are not able to maintain glucocorticoid- free remission with tocilizumab. The impact of tocilizumab on vascular lesions of GCA is largely unknown since conflicting results have been obtained by imaging.

View Article and Find Full Text PDF

The subject of this study is Boiss. 1844: a member of the section , subsection . This species is infrequently included in phylogenetic studies and is commonly regarded as a heterotypic synonym of Tausch.

View Article and Find Full Text PDF

A novel rearranged C-diterpenoid alkaloid, carmiseconapline A (), featuring a unique 10,20:11,12-di--napelline skeleton with a fused 5/6/5/6/7 pentacyclic ring system, was isolated from Debeaux. Compound exhibited remarkable antidepressive activity, being twice as potent as fluoxetine (10 mg/kg) at 0.06 mg/kg in mice.

View Article and Find Full Text PDF

Background: Cancer cells display oxidative metabolic dysregulation to fulfill their bioenergy requirements. Specifically, efforts were made to regulate the metabolite succinate and its negative effects as an inducer for neoplasm invasion and metastasis.

Methods: Binding affinity of naringenin (NAR) to mitochondria complex II (CΙΙ) subunits, sirtuin3 (SIRT3), tumor necrosis factor associate protein 1(TRAP1), and succinate receptor (SUCNR1) was studied by molecular docking.

View Article and Find Full Text PDF

Mitochondrial genetic markers based phylogenetic analyses of Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae).

J Genet Eng Biotechnol

March 2025

Department of Veterinary Parasitology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.

The hard tick Hyalomma dromedarii, a vector for numerous animal and human pathogens, was investigated for genetic diversity using the mitochondrial cytochrome C oxidase subunit I (cox I) and 16S ribosomal RNA (16S rRNA) genes. Hyalomma dromedarii sequences (n = 11 cox I; n = 7 16S rRNA) were deposited in GenBank (LC761179-89, LC761173-78, LC654692), showing 99.52-100 % (cox I) and 98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!