Fragile X syndrome (FXS), caused by FMR1 gene mutations, leads to widespread brain alterations significantly impacting cognition and behaviour. Recent advances have provided a deeper understanding of the neural substrates of FXS. This review provides a comprehensive overview of the current knowledge of neuronal network alterations in FXS. We highlight imaging studies that demonstrate network-level disruptions within resting-state networks, including the default mode network, frontoparietal network, salience network, and basal ganglia network, linked to cognitive, emotional and motor deficits in FXS. Next, we link dysregulated network activity in FXS to molecular studies showing neurometabolic imbalances, particularly in GABAergic and glutamatergic systems. Additionally, gene-brain-behavior correlations are explored with gene expression maps to illustrate regional FMR1 expression patterns tied to clinical symptoms. A graph analysis and meta-analytic mapping further link these dysfunctional networks to the specific symptoms of FXS. We conclude by highlighting gaps in the literature, including the need for greater global collaboration, inclusion of underrepresented populations, and consideration of transdiagnostic effects in future research to advance neuroimaging and therapeutic approaches for FXS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2025.106101 | DOI Listing |
Lett Appl Microbiol
March 2025
Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of C.
View Article and Find Full Text PDFCell Struct Funct
March 2025
Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute.
During angiogenesis, sprouting endothelial cells (ECs) migrate and eventually connect to target vessels to form new vessel branches. However, it remains unclear how these sprouting vessels migrate toward the target vessels in three-dimensional space. We performed in vivo imaging of the cerebral capillary network formation in zebrafish to investigate how sprouting tip cells migrate toward their targets.
View Article and Find Full Text PDFNeurosci Biobehav Rev
March 2025
Neuroscience and Mental Health, The Hospital for Sick Children, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Neurosurgery, The Hospital for Sick Children, Canada.
Fragile X syndrome (FXS), caused by FMR1 gene mutations, leads to widespread brain alterations significantly impacting cognition and behaviour. Recent advances have provided a deeper understanding of the neural substrates of FXS. This review provides a comprehensive overview of the current knowledge of neuronal network alterations in FXS.
View Article and Find Full Text PDFJ Environ Manage
March 2025
State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
Ammonia (NH) and nitrous oxide (NO) release are the main causes of nitrogen loss during aerobic composting. In this study, hyperthermophilic aerobic composting of refinery waste activated sludge (RWAS) was performed by adding extreme thermophilic bacteria, and the effects of inoculation on NH and NO emissions were systematically studied. The results revealed that inoculation achieved hyperthermophilic aerobic composting (T group), increased maturity, and reduced NH and NO emissions by 32.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!