A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Timosaponin AⅢ inhibits ectopic lipid deposition and enhances the browning of white adipose tissue. | LitMetric

Timosaponin AⅢ(TAⅢ), derived from the Chinese medicinal herb Anemarrhena asphodeloides Bunge, has been reported to have a range of pharmacological effects including improvement of learning and memory deficits, anti-tumor, hypoglycemic effect and anti-hypertension. This study explored the therapeutic effects and preliminary mechanisms of TAⅢ in improving insulin resistance in ob/ob mice. We found that treatment with 10 mg·kg·d of TAⅢ reduced the expression of SREBPs and alleviated ectopic lipid deposition by decreasing DAG accumulation in liver. The decrease of DAG further inhibited the membrane translocation of PKC-ε, releasing its inhibition of phosphorylation at Ser307 of IRS1, and ultimately enhancing the AKT signaling response to insulin stimulation. In addition, TAⅢ promoted the browning of iWAT by activating the PGC1α-UCP1 axis on ob/ob mice, thereby enhancing fatty acid oxidation and increasing energy consumption, thus reducing its interference with insulin signaling. TAⅢ worked by enhancing the function of adipose tissue and inhibited lipid synthesis. These actions collectively ameliorated metabolic disturbances associated with insulin resistance. Therefore, we preliminarily concluded that TAⅢ improved metabolic disturbances related to insulin resistance. However, further research is needed,additional studies are necessary to validate these potential mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2025.177506DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
ectopic lipid
8
lipid deposition
8
adipose tissue
8
ob/ob mice
8
metabolic disturbances
8
taⅢ
5
insulin
5
timosaponin aⅢ
4
aⅢ inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!