Sawdust is a by-product of wood processing and it was rapidly humified with KSO under alkaline-thermal synergistic activation to produce a fulvic-like-acid (FLA) organic fertilizer (SFOF) in this study. The optimum conditions were KSO: KOH mass ratio of 1:2 and 150℃, meanwhile FLA yield could reach 180.3 mg/g in 2 h. The carboxylation, Maillard reaction, and aromatization processes occurred during sawdust humification. And then, SFOF was mixed with attapulgite and modified starch binder to get an organic fertilizer (SAM), and coated with amino silicone oil (ASO) to create a slow-release granule (SAM@ASO). The release mechanism of FLA from SAM@ASO was consistent with Ritger-Peppas release kinetics. SAM@ASO, with high biosafety, could promote water spinach growth and remediate acidic soil (pH from 4.9 to 6.3). This method offers a promising approach for sawdust utilization and a novel FLA-based organic fertilizer for acidic soil remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132388 | DOI Listing |
Bioresour Technol
March 2025
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; National Circular Economy Engineering Laboratory, Shanghai 201620, People's Republic of China. Electronic address:
Sawdust is a by-product of wood processing and it was rapidly humified with KSO under alkaline-thermal synergistic activation to produce a fulvic-like-acid (FLA) organic fertilizer (SFOF) in this study. The optimum conditions were KSO: KOH mass ratio of 1:2 and 150℃, meanwhile FLA yield could reach 180.3 mg/g in 2 h.
View Article and Find Full Text PDFSci Total Environ
March 2025
Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan. Electronic address:
Research on the effects of rice fertigation using treated municipal wastewater (TWW) as the sole source of nutrients and irrigation water remains limited. This study examined the impact of continuous TWW irrigation on rice-soil systems across three years (2021-2023), focusing on soil health, plant growth and yield, and the mineral and toxic element composition of rice grains. Forage rice cultivation using TWW fertigation (test field) was compared with conventional cultivation using chemical fertilisers and canal water (control field).
View Article and Find Full Text PDFJ Hazard Mater
March 2025
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
Microplastics (MPs) have been widely detected in the soil environment. The Weishan Irrigation District is the largest irrigation area in the lower reaches of the Yellow River. However, little is known about MP pollution levels in the soils of this area.
View Article and Find Full Text PDFPLoS One
March 2025
Alliance of Biodiversity International and CIAT, ILRI, Addis Ababa, Ethiopia.
Depletion of soil organic matter was found to be the primary biophysical factor causing declining per capita food production in sub-Saharan Africa. The magnitude of this problem was exacerbated by moisture-stress and imbalanced fertilizer application that caused Striga weed infestation. To address such confounded issues, two-year field experiments were conducted to evaluate the effect of residual vermicompost and preceding groundnut on soil fertility, sorghum yield, and Striga density.
View Article and Find Full Text PDFCell Rep
March 2025
Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Lateral roots (LRs) can continuously forage water and nutrients from soil. In Arabidopsis thaliana, LR development depends on a canonical auxin signaling pathway involving the core transcription factors INDOLE-3-ACETIC ACIDs (IAAs) and AUXIN RESPONSE FACTORs (ARFs). In this study, we identified a protein, bacillolysin, secreted by the beneficial rhizobacterium Bacillus velezensis SQR9, that is able to stimulate LR formation of Arabidopsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!