Objective:  The goal is to analyze the osteogenesis potential of polymethylmethacrylate (PMMA)-hydroxyapatite (HA) and stem cells from human exfoliated deciduous teeth (SHED) as a biomaterial candidate for alveolar bone defect therapy through a bioinformatic approach within an study.

Materials And Methods:  Three-dimensional (3D) ligand structures consisting of HA, PMMA, and target proteins of SHED were obtained from the PubChem database. STITCH was used for SHED target protein analysis, STRING was utilized for analysis and visualization of protein pathways related to osteogenesis, PASS Online was employed to predict biological functions supporting osteogenesis potential, PyRx 0.8 was used for molecular docking analysis, and PyMol was utilized to visualize the 3D structures resulting from the molecular docking analysis.

Results:  PMMA ligand was found to support osteogenesis through several biological functions, while interaction of HA ligand with matrix metalloproteinase (MMP) 20, DSPP, IBSP, SPP1, CD44, and MMP7 protein was revealed to play a role specifically in extracellular matrix organization. The interaction of all these proteins played a role in various pathways of osteogenesis. Toxicity level predictions of PMMA and HA were at class V and class III, respectively, which means that both ligands were shown to be neither hepatotoxic, carcinogenic, immunotoxic, nor cytotoxic. However, the ligand of PMMA had a lower binding affinity to SHED's protein (MMP7, MMP20, CD44, BMP7, and COL1A1) than the control ligand.

Conclusion:  The interaction between HA-PMMA ligands and several SHED proteins showed biological process and osteogenesis pathways supporting the osteogenesis potential of PMMA-HA and SHED for alveolar bone defect therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0044-1801280DOI Listing

Publication Analysis

Top Keywords

osteogenesis potential
16
alveolar bone
12
osteogenesis
8
stem cells
8
cells human
8
human exfoliated
8
exfoliated deciduous
8
deciduous teeth
8
bone defect
8
defect therapy
8

Similar Publications

Objective:  The goal is to analyze the osteogenesis potential of polymethylmethacrylate (PMMA)-hydroxyapatite (HA) and stem cells from human exfoliated deciduous teeth (SHED) as a biomaterial candidate for alveolar bone defect therapy through a bioinformatic approach within an study.

Materials And Methods:  Three-dimensional (3D) ligand structures consisting of HA, PMMA, and target proteins of SHED were obtained from the PubChem database. STITCH was used for SHED target protein analysis, STRING was utilized for analysis and visualization of protein pathways related to osteogenesis, PASS Online was employed to predict biological functions supporting osteogenesis potential, PyRx 0.

View Article and Find Full Text PDF

Periodontitis is one of the major oral health issues worldwide, with significant impacts on oral health and patients's quality of life, but current therapies have not achieved optimal regeneration of periodontal tissue. This study developed scaffolds using natural tussah silk fibroin (TSF) cross-linked with regenerated silk fibroin (SF) nanofibers to improve mechanical properties and wet-state stability. Zinc oxide (ZnO) and polydopamine (PDA) composite nanoparticles were loaded into scaffold to impart its antibacterial and photothermal properties to construct a photo-responsive composite scaffold (ZnO/PDA/TSF-SF).

View Article and Find Full Text PDF

Vascularized bone tissue engineering for osteogenesis is considered a key approach for the repair of critical bone defects. Icariin(ICA) has been employed in bone tissue engineering for osteogenesis in several studies, demonstrating significant angiogenic and osteogenic effects in vivo in rat models. However, the in vivo angiogenic and osteogenic effects of Icariside II (ICSII), a gastrointestinal metabolite of ICA, remain unclear.

View Article and Find Full Text PDF

Background: Bone defects, particularly in the mandible, pose significant clinical challenges due to the limited regenerative capacity. Effective bone tissue engineering requires biomaterials that promote both osteogenesis and angiogenesis. This study developed an optimized collagen-nano hydroxyapatite scaffold loaded with dexamethasone and stem cells to enhance bone regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!