Objectives:  The Ti6Al4V ELI alloy produced via laser powder bed fusion (L-PBF) has attracted interest for use in dental applications. However, surface finishing is an important property that can be managed by various methods. The purpose of this study was to investigate the effects of electropolishing (EP) on the surface roughness and corrosion resistance of L-PBF Ti6Al4V ELI alloy.

Materials And Methods:  The present study explored the influence of current density (0.3 A/cm), voltage (15 V), and distance (2 and 4 cm) on the surface quality of L-PBF-printed Ti6Al4V ELI. The potentiodynamic polarization testing was performed to investigate the corrosion behavior of electropolished Ti6Al4V ELI alloy plates.

Statistical Analysis:  The data variation was compared at different conditions of EP using a one-way analysis of variance and Tukey's testing at a significance level of 5%.

Results:  This study showed that EP significantly reduced the surface roughness and enhanced corrosion resistance of printed Ti6Al4V ELI alloy with the best result achieved by using 15 V and 2 cm of anode-cathode distance.

Conclusion:  This study indicates that customized EP settings are crucial for optimizing the surface properties of Ti6Al4V ELI for use in dental and biomedical applications. However, the corrosion resistance can be reduced due to increased porosity resulting from the EP treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0045-1802572DOI Listing

Publication Analysis

Top Keywords

ti6al4v eli
28
eli alloy
16
corrosion resistance
16
optimizing surface
8
surface quality
8
l-pbf ti6al4v
8
dental applications
8
surface roughness
8
 this study
8
ti6al4v
7

Similar Publications

Objectives:  The Ti6Al4V ELI alloy produced via laser powder bed fusion (L-PBF) has attracted interest for use in dental applications. However, surface finishing is an important property that can be managed by various methods. The purpose of this study was to investigate the effects of electropolishing (EP) on the surface roughness and corrosion resistance of L-PBF Ti6Al4V ELI alloy.

View Article and Find Full Text PDF

In clinical practice, mini-screws of titanium-6-aluminum-4-vanadium alloy with an extra low interstitial (ELI) grade (Ti-6Al-4V ELI) are widely used as orthodontic anchorages. However, in orthodontic treatment, Ti-6Al-4V mini-screw failure because of peri-implantitis is a major challenge. To prevent damage caused by peri-implantitis, we developed a novel Ti-6Al-4V disc/screw coated with poly(lactide--glycolide) incorporating fisetin, a naturally occurring flavonoid with anti-inflammatory and antiosteoclastogenic/osteogenic properties.

View Article and Find Full Text PDF

Implants aim to restore skeletal dysfunction associated with ageing and trauma, yet infection and ineffective immune responses can lead to failure. This project characterized the microbiological and host cell responses to titanium alloy with or without electroplated metallic copper. Bacterial viability counting and scanning electron microscopy quantified and visualized the direct and indirect bactericidal effects of the Cu-electroplated titanium (Cu-Ep-Ti) against two different Staphylococcus aureus strains.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Simple Scaling as a Tool to Help Assess the Closure-Free / Versus Δ Curve in a Range of Materials.

Materials (Basel)

November 2024

Centre of Expertise for Structural Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

Recent studies have proposed a simple formula, which is based on Elber's original approach to account for -ratio effects, for determining the crack closure-free Δ versus / curve from the measured -ratio-dependent Δ versus / curves. This approach, which is termed "Simple Scaling," has been shown to collapse the various -ratio-dependent curves onto a single curve. Indeed, this approach has been verified for a number of tests on metals, polymers, and a medium-entropy alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!