While biological studies of the FLASH effect in proton beams have mainly been performed in the plateau region at maximum beam energy and current, this type of delivery has limited clinical applications. Naturally, it is anticipated that plans to treat patients clinically with FLASH-radiotherapy (FLASH-RT) will capitalize on the Bragg peak. However, as the proton spot widens with depth, the time required to deliver the entire dose to any single point increases. This decreases the dose rate, making the ultra-high dose rates required to trigger the FLASH effect harder to achieve over large areas. Importantly, the dose rate is difficult to measure directly. Time and dose linearity of a fast-resolving commercial plastic scintillation detector were characterized against an ionization chamber. The percent depth dose of a 250 MeV proton beam scanned across a small area (3.5 × 3.5 cm2) was measured at depths of 3-40 cm in solid water. The plastic scintillation detector was used to evaluate the instantaneous and voxel-averaged dose rates as a function of depth for conventional (2 nA nozzle current) and ultra-high dose rate (100 nA) beams. The response of the plastic scintillation detector was shown to be linear with time (±2.5 ms) and absorbed dose (±2%). The scintillator and ionization chamber measurements agreed well as a function of depth (and therefore energy) within 2% for depths <34 cm. Beyond 34 cm, expected quenching effects were observed in the plastic scintillation detector. The voxel-averaged dose rate varied from 52.7 Gy/s at the entrance to 29.3 Gy/s at mid-depth, to 70.4 Gy/s near the Bragg peak, while the maximum instantaneous dose rate decreased from 472 Gy/s near the entrance to 236 Gy/s at the Bragg peak. The plastic scintillation detector has proven useful for investigators to evaluate the complex relationship between dose rate and pencil-beam scanning ultra-high dose rate beam characteristics. There is a loss of dose rate near the Bragg peak due to spot widening, which may acutely impact our ability to exploit the FLASH effect for sparing normal tissues upstream of the intended treatment area. A thorough preclinical investigation of whether the FLASH effect is maintained near the Bragg peak is necessary before this technique can begin translation to the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RADE-24-00117.1 | DOI Listing |
Bull Cancer
March 2025
Oncologie médicale, Institut Curie, Paris, France.
Patients who develop Ewing sarcoma with extra-pulmonary metastasis have a poor prognosis. A recent French protocol, CombinaiR3, was set up to evaluate the efficacy of induction chemotherapy followed by high-dose chemotherapy and metronomic maintenance treatment. It is now closed for inclusions and while waiting for the results, we propose a French consensus guideline for the management of patients diagnosed with Ewing sarcoma with extra-pulmonary dissemination.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2024
Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK.
Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2025
Department of Ecology, University of Chicago, Chicago, Illinois 60637, USA.
Understanding how the auxin hormone signaling pathway components come together to orchestrate cellular responses is key to engineering the growth and development of maize. Although a variety of techniques exist to measure auxin activities in plants, many are time- and resource-intensive or do not easily allow for high-throughput quantitative measurement of component libraries. The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the auxin hormone signaling pathway from essentially any plant.
View Article and Find Full Text PDFJ Phycol
March 2025
International Center for Biotechnology, Osaka University, Osaka, Japan.
The interdependence between microalgae and bacteria has sparked scientific interest over years, primarily driven by the practical applications of microalgal-bacteria consortia in wastewater treatment and algal biofuel production. Although adequate studies have focused on the broad interactions and general behavior between the two entities, there remains a scarcity of study on the metabolic role of symbiotic bacteria in promoting microalgal growth. Here, we use the KEIO Knockout Collection, an Escherichia coli gene knockout mutant library, to systematically screen for genes involved in the interdependence of Chlorella sorokiniana and E.
View Article and Find Full Text PDFRadiat Res
March 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
While biological studies of the FLASH effect in proton beams have mainly been performed in the plateau region at maximum beam energy and current, this type of delivery has limited clinical applications. Naturally, it is anticipated that plans to treat patients clinically with FLASH-radiotherapy (FLASH-RT) will capitalize on the Bragg peak. However, as the proton spot widens with depth, the time required to deliver the entire dose to any single point increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!