A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heme metabolism mediates RANKL-induced osteoclastogenesis via mitochondrial oxidative phosphorylation. | LitMetric

Bone undergoes life-long remodelling, in which disorders of bone remodelling could occur in many pathological conditions including osteoporosis. Understanding the cellular metabolism of osteoclasts is key to developing new treatments for osteoporosis, a disease that affects over 200 million women worldwide per annum. We found that human osteoclast differentiation from peripheral blood mononuclear cells (PBMCs) derived from 8 female patients is featured with a distinct gene expression profile of mitochondrial biogenesis. Elevated mitochondrial membrane potential (MMP, Δψm) was also observed in RANKL-induced osteoclasts. Interestingly, the gene pathways of heme synthesis and metabolism were activated upon RANKL stimulation, featured by a transcriptomic profiling in murine cells at a single-cell resolution, which revealed a stepwise expression pattern of heme-related genes. The real-world human data also divulges potential links between heme-related genes and bone mineral density. Heme is known to have a role in the formation of functional mitochondrial complexes that regulate MMP. Disruption of heme biosynthesis via genetically silencing Ferrochelatase or a selective inhibitor, N-methyl Protoporphyrin IX (NMPP), demonstrated potent inhibition of osteoclast differentiation, with a dose-dependent effect observed in NMPP treatment and a substantial efficacy even at a single dose. In vivo study further showed the protective effect of NMPP on ovariectomy-induced bone loss in female mice. Collectively, we found that RANKL-mediated signaling regulated mitochondrial formation and heme metabolism to synergistically support osteoclastogenesis. Inhibition of heme synthesis impaired osteoclast formation and reversed excessive bone loss, representing a new therapeutic target for metabolic skeletal disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jbmr/zjaf040DOI Listing

Publication Analysis

Top Keywords

heme metabolism
8
osteoclast differentiation
8
heme synthesis
8
heme-related genes
8
bone loss
8
heme
6
mitochondrial
5
bone
5
metabolism mediates
4
mediates rankl-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!