Conjugated polymers (CPs) are considered one of the most important gas-sensing materials due to their unique features, combining the benefits of both metals and semiconductors, along with their outstanding mechanical properties and excellent processability. However, CPs with conventional morphological structures, such as largely amorphous and bulky matrices, face limitations in practical applications because of their inferior charge transport characteristics, low surface area, and insufficient sensitivity. Therefore, the design and development of novel morphological nanostructures in CPs have attracted significant attention as a promising strategy for improving morphological and electrical characteristics, thereby enabling a considerable increase in the sensing performance of corresponding gas sensors. Numerous CP nanostructures have been developed and implemented for high-performance gas sensors. Highlighting the morphological advances and bottlenecks of these nanostructures is crucial for providing an overview of developing trends, potential strategies, and emerging areas for the future development of CP nanostructures in the field. In this regard, this study describes state-of-the-art CP nanostructures, emphasizing their attractive morphological and electrical characteristics to help readers and researchers better understand emerging trends, promising future directions, and key obstacles for the application of CP nanostructure-based gas sensors. The most crucial aspects of CP nanostructures, including advanced preparation techniques, morphological properties, and sensing characteristics, are discussed and assessed in detail. Moreover, development strategies and perspectives for achieving high sensing efficiency in CP nanostructure-based flexible and wearable sensors are summarized and emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.127904 | DOI Listing |
Talanta
March 2025
NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam. Electronic address:
Conjugated polymers (CPs) are considered one of the most important gas-sensing materials due to their unique features, combining the benefits of both metals and semiconductors, along with their outstanding mechanical properties and excellent processability. However, CPs with conventional morphological structures, such as largely amorphous and bulky matrices, face limitations in practical applications because of their inferior charge transport characteristics, low surface area, and insufficient sensitivity. Therefore, the design and development of novel morphological nanostructures in CPs have attracted significant attention as a promising strategy for improving morphological and electrical characteristics, thereby enabling a considerable increase in the sensing performance of corresponding gas sensors.
View Article and Find Full Text PDFACS Sens
March 2025
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China.
Electronic noses have been widely used in industrial production, food preservation, agricultural product storage, environmental monitoring, and other fields. However, due to the cross-sensitivity of gas-sensing responses, accurately measuring the concentration of mixed gases remains challenging. To address this issue, this study attempts to determine the number of state variables that produce the cross-influence based on the experimental data, establish the state space model from the equivalent circuit model, and obtain model parameters through parameter correlation iterative algorithms and a Kalman filter.
View Article and Find Full Text PDFFlow Meas Instrum
March 2025
Fluid Metrology Group, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899.
Numerous process gases are used in the production of semiconductor chips. Accurate metering of these gases into process chambers is critical for maximizing device throughput and yield. A national flow standard for semiconductor process gases does not exist, forcing the industry to rely on approximate "meter factors" to extrapolate a meter calibration carried out with nitrogen to the actual process gas.
View Article and Find Full Text PDFFront Chem
February 2025
Chemistry Department, Moscow State University, Moscow, Russia.
Resistive type gas sensors based on wide-bandgap semiconductor oxides are remaining one of the principal players in environmental air monitoring. The rapid development of technology and the desire to miniaturize electronics require the creation of devices with minimal energy consumption. A promising solution may be the use of photoactivation, which can initiate/accelerate physico-chemical processes at the solid-gas interface and realize detection of flammable and explosive gases at close to room temperature.
View Article and Find Full Text PDFMed Gas Res
June 2025
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China (Zhao Q, Zhong S, Li L).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!