microRNAs are small oligonucleotides involved in post-transcriptional gene regulation whose alteration is found in several diseases, including cancer, and therefore their detection is crucial for diagnosis, prognosis, and treatment purposes. Field-Effect Transistor-based biosensors (bioFETs) represent a promising technology for the clinical detection of microRNAs. However, one of the main challenges associated with this technology is the Debye screening, becoming significant at the high ionic strengths required for effective hybridization. We aimed at detecting oncogenic microRNA-155 by using a bioFET system using as capture element a complementary RNA probe (antimiR-155) combined with the introduction of PEG molecules (20 kDa, PEG20), at an ionic strength of 300 mM. We optimized the co-immobilization ratio between antimiR-155 and PEG20 and assessed its impact on the interactions between the oligonucleotides. The kinetics can be well described by the Langmuir-Freundlich isotherm with an affinity constant within the range typical of nucleic acid interactions. The introduction of PEG20 significantly enhanced the detection sensitivity of miR-155 by reaching a level of less than 200 pM, together with excellent discrimination against other clinically relevant microRNAs. Our findings demonstrate that the incorporation of PEG20 constitutes an effective strategy to mitigate the Debye screening effects and facilitates bioFET-based clinical applications at physiological ionic strengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.127881 | DOI Listing |
Int J Biol Macromol
March 2025
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas (IITEMA, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina. Electronic address:
Lactoferrin, a multifunctional glycoprotein with significant biological properties, presents significant potential for the prevention and treatment of infectious diseases. However, the effectiveness of oral Lactoferrin is limited by its susceptibility to degradation in harsh stomach conditions, reducing its bioavailability and therapeutic efficacy. To address this challenge, this study employs Chitosan/Alginate microparticles to enhance Lactoferrin stability and antibacterial activity.
View Article and Find Full Text PDFTalanta
March 2025
Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy. Electronic address:
microRNAs are small oligonucleotides involved in post-transcriptional gene regulation whose alteration is found in several diseases, including cancer, and therefore their detection is crucial for diagnosis, prognosis, and treatment purposes. Field-Effect Transistor-based biosensors (bioFETs) represent a promising technology for the clinical detection of microRNAs. However, one of the main challenges associated with this technology is the Debye screening, becoming significant at the high ionic strengths required for effective hybridization.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:
Metal-organic frameworks (MOFs)-based nanomaterials have great potential in the field of electrochemical energy storage due to their abundant pore size, high specific surface area, controllable structure and porosity, and homogeneous metal center. MOFs complexes and derivatives not only inherit the original morphology characteristics of MOFs but also provide excellent electrochemical performance. Batteries operating in aqueous electrolytes are cheaper, safer, and have higher ionic conductivity than those operating in conventional organic electrolytes.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, Münster D-48149, Germany.
Lithium argyrodites LiPS ( = Cl, Br, I) are a promising class of solid-state electrolytes with the potential to achieve high conductivities (>10 mS·cm) necessary for use in solid-state batteries. Previous research has shown that structural factors, in particular, site disorder between the sulfide and halide anions, can impact the ionic conductivity of lithium argyrodites. One current hypothesis for this correlation between anion site disorder and ionic transport is a connection to the lithium-ion substructure.
View Article and Find Full Text PDFAdv Mater
March 2025
Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Advanced Materials, Department of Biomaterials, College of Materials, Institute of Flexible Electronics (IFE, Future Technologies), Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China.
Ionic devices find applications such as flexible electronics and biomedicines and function by exploiting hybrid circuits of mobile ions and electrons. However, the poor interfacial compatibility of hard electronic conductors with soft ionic conductors in ionic devices leads to low deformability, sensitivity, electromechanical responses, and stability. Herein, an interpenetrating interface between silicone-modified polyurethane/carbon nanotube electronic conductors and ionoelastomers in an ionic device using in situ polymerization is fabricated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!