CSF1R inhibition agents protect against cisplatin ototoxicity and synergize with immunotherapy for Head and Neck Squamous Cell Carcinoma.

Int Immunopharmacol

Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:

Published: March 2025

Immunotherapy has emerged as a promising therapeutic approach. However, limited research exists on combining cisplatin with CSF1/CSF1R immunotherapy in Head and Neck Squamous Cell Carcinoma. Furthermore, few studies have investigated concurrent immunotherapeutic strategies to mitigate cisplatin-induced ototoxicity.Developing otoprotective agents that simultaneously reduce cisplatin resistance and enhance therapeutic efficacy holds significant implications for future treatment modalities. In this investigation, we evaluated the safety and efficacy profile of CSF1R inhibitor (PLX3397). Our findings demonstrate that PLX3397 confers otoprotection in cisplatin-induced ototoxicity through cochlear macrophage depletion, synergizes with cisplatin inhibited tumor cell survival, migration, and invasion in vitro. Additionally, it significantly suppressed xenograft tumor lesion growth and angiogenesis in zebrafish models while modulating the polarization state of tumor-associated macrophages in vitro and inducing tumor immune activation. Our findings suggest that PLX3397 represents a promising immunotherapeutic agent, and its combination with cisplatin may constitute a novel therapeutic strategy for attenuating cisplatin-induced ototoxicity while synergistically enhancing immunotherapy for Head and Neck Squamous Cell Carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2025.114428DOI Listing

Publication Analysis

Top Keywords

immunotherapy head
12
head neck
12
neck squamous
12
squamous cell
12
cell carcinoma
12
cisplatin-induced ototoxicity
8
cisplatin
5
csf1r inhibition
4
inhibition agents
4
agents protect
4

Similar Publications

CSF1R inhibition agents protect against cisplatin ototoxicity and synergize with immunotherapy for Head and Neck Squamous Cell Carcinoma.

Int Immunopharmacol

March 2025

Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:

Immunotherapy has emerged as a promising therapeutic approach. However, limited research exists on combining cisplatin with CSF1/CSF1R immunotherapy in Head and Neck Squamous Cell Carcinoma. Furthermore, few studies have investigated concurrent immunotherapeutic strategies to mitigate cisplatin-induced ototoxicity.

View Article and Find Full Text PDF

Purpose Of Review: Recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) remains a significant therapeutic challenge due to its biological complexity and clinical heterogeneity. This review addresses the relevance of exploring novel therapeutic approaches, particularly in light of recent advances and the persistent unmet needs in patient outcomes.

Recent Findings: Recent phase II and III clinical trials have highlighted promising strategies, including combinations of immunotherapy with targeted therapies, antibody-drug conjugates (ADCs), HPV vaccines, dual immunotherapy approaches, and therapies targeting the tumor microenvironment.

View Article and Find Full Text PDF

Efficacy Evaluation of "Enhanced" Natural Killers with and Knockouts on Viability and Metabolic Status of 3D Glioblastoma Spheroid Cells in Patients.

Sovrem Tekhnologii Med

March 2025

MD, PhD, Senior Researcher, Laboratory of Cell Technologies; Federal Scientific and Clinical Center of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Head of the Laboratory of Solid Tumor Immunotherapy; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Senior Researcher, Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.

Unlabelled: One of the alternative approaches to glioblastoma treatment is cellular immunotherapy based on natural killer cells (NK cells). To enhance their cytotoxic effect on tumor cells, new NK cell lines are being created using genetic engineering techniques. was to evaluate the impact efficacy of "enhanced" NK cells on early metabolic rearrangements and the viability of glioblastoma cells in a patient using a tumor spheroid model.

View Article and Find Full Text PDF

Migration of Regulatory T Cells to the Peritumor Microenvironment of Experimental Glioblastoma.

Sovrem Tekhnologii Med

March 2025

MD, PhD, Head of the Laboratory of Solid Tumor Immunotherapy; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Senior Researcher, Laboratory of Cell Technologies; Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Senior Researcher, Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.

Unlabelled: Glioblastoma is the most aggressive primary brain tumor with poor prognosis characterized by resistance to standard treatments and immune evasion. Regulatory T lymphocytes (Tregs) play a key role in immune suppression in the tumor microenvironment and can be used as targets for malignant gliomas therapy. is to study migration of Tregs to the tumor site in the process of dynamic glioblastoma growth on the transgenic C57Bl/6-FoxP3-eGFP mouse line.

View Article and Find Full Text PDF

Background: Atezolizumab plus bevacizumab is recommended as a first-line treatment for unresectable hepatocellular carcinoma (uHCC). A subgroup analysis of the IMbrave150 trial showed shorter overall survival (OS) in uHCC patients with stable disease (SD) than patients with complete response (CR) or partial response (PR) after atezolizumab plus bevacizumab. Improving OS in patients with SD is an unmet medical need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!