Atherosclerosis is a chronic inflammatory disease in which mitochondrial DNA (mtDNA) has emerged as a key contributor to its pathogenesis. We synthesized evidence from experimental and clinical studies showing that mtDNA damage, release, and mutation profoundly affect endothelial cells, macrophages, and vascular smooth muscle cells, thereby driving plaque initiation and progression. By activating immune signaling pathways-including cGAS-STING, NLRP3 inflammasome, and TLR9-mtDNA amplifies inflammation and oxidative stress, exacerbating atherosclerotic lesion development. We further highlight that mtDNA copy number variations and specific mtDNA mutations may serve as biomarkers for early atherosclerosis detection and risk stratification. In reviewing these data, we also discuss promising therapeutic interventions aimed at mitigating mtDNA damage, such as mitochondria-targeted antioxidants and enhanced mitophagy, which have shown preliminary efficacy in delaying plaque progression. Overall, this review underscores mtDNA's dual role as both a driver of atherosclerosis and a potential diagnostic and therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2025.114449 | DOI Listing |
Mitochondrial DNA A DNA Mapp Seq Anal
March 2025
Institute of Biochemistry and Genetics of Ufa, Federal Research Centre of RAS, Ufa, Russia.
The subject of this study is Boiss. 1844: a member of the section , subsection . This species is infrequently included in phylogenetic studies and is commonly regarded as a heterotypic synonym of Tausch.
View Article and Find Full Text PDFAnn Vasc Surg
April 2025
Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, China. Electronic address:
Background: Venous thromboembolism (VTE), including pulmonary embolism (PE) and deep vein thrombosis (DVT), is the third most common cardiovascular disease. A low amount of mitochondrial DNA copy number (mtDNA-CN) reflects mitochondrial dysfunctions and has been associations with arterial cardiovascular diseases. However, the role of mtDNA-CN in venous cardiovascular disease was unclear.
View Article and Find Full Text PDFInt Immunopharmacol
March 2025
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. Electronic address:
Atherosclerosis is a chronic inflammatory disease in which mitochondrial DNA (mtDNA) has emerged as a key contributor to its pathogenesis. We synthesized evidence from experimental and clinical studies showing that mtDNA damage, release, and mutation profoundly affect endothelial cells, macrophages, and vascular smooth muscle cells, thereby driving plaque initiation and progression. By activating immune signaling pathways-including cGAS-STING, NLRP3 inflammasome, and TLR9-mtDNA amplifies inflammation and oxidative stress, exacerbating atherosclerotic lesion development.
View Article and Find Full Text PDFVet Microbiol
March 2025
Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:
Varicellovirus bovinealpha (BoAHV) types 1(BoAHV-1) is one of the most significant viruses affecting cattle, causing substantial economic losses in the global cattle industry. Virus productive infection in cell cultures leads to mitochondrial dysfunction, resulting in the overproduction of reactive oxygen species (ROS), which act as inflammatory mediators and exert cytotoxic effects. But the underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!