Copper's dual role: Reviewing its impact on liver health and disease.

Int Immunopharmacol

Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China. Electronic address:

Published: March 2025

As an essential trace element in the human body, Cu exists in the oxidation states of Cu(II) and Cu(I). The interconversion between these states is closely associated with various redox reactions and plays a pivotal role in cellular respiration regulation, energy metabolism, cell growth regulation, and angiogenesis promotion among other biological processes. As the primary metabolic organ, the liver synthesises and secretes Cu-binding proteins to maintain Cu homeostasis and regulate its metabolism. Studies have increasingly demonstrated that abnormally high or low levels of Cu can negatively affect the immune and metabolic microenvironment within the liver. In this review, we summarise the mechanisms underlying Cu metabolism and its dysregulation and highlight the potential involvement of disrupted Cu metabolism in several liver diseases. Our review provides insights that will help in the future development of novel therapeutic targets focusing on Cu metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2025.114391DOI Listing

Publication Analysis

Top Keywords

metabolism
5
copper's dual
4
dual role
4
role reviewing
4
reviewing impact
4
liver
4
impact liver
4
liver health
4
health disease
4
disease essential
4

Similar Publications

Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.

Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.

View Article and Find Full Text PDF

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Omega-3 index improves upon the pooled cohort equation in predicting risk for CVD.

J Clin Lipidol

February 2025

Fatty Acid Research Institute, Sioux Falls, SD, USA (Drs Tintle, Marchioli, and Harris); Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA (Dr Harris).

Background: Accurate predictive tools are crucial for identifying patients at increased risk for atherosclerotic cardiovascular disease (ASCVD). The Pooled Cohort Equation (PCE) is commonly used to predict 10-year risk for ASCVD, but its accuracy remains imperfect.

Objective: This study examined the extent to which the omega-3 index (O3I; the proportion of eicosapentaenoic acid+docosahexaenoic acid in erythrocyte membranes) improved the predictive capability of PCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!