In this work, several peptides of soluble suppression of tumorigenicity 2 (sST2) were screened, synthesized, and then imprinted with electropolymerization onto poly(aniline-co-3-aminobenzenesulfonic acid), poly(AN-co-MSAN). Three MXenes, including titanium or molybdenum carbides, were also doped within the conductive polymer film to enhance the electrochemical response. The electrodes were employed as the extended gate in a field-effect transistor (EG-FET) platform. The sensing range and limit of detection for sST2 were found to be from 1.0 fg/mL to 100.0 pg/mL and 0.05 fg/mL, respectively. Importantly, incorporation of a Mo-based MXene increased the responsivity of the FET sensor by a factor of about 1.5 at pg/mL to ng/mL sST2 concentrations. This study demonstrated the potential utility of an sST2-imprinted electrochemical sensor for diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117353DOI Listing

Publication Analysis

Top Keywords

soluble suppression
8
suppression tumorigenicity
8
electrosynthesis molybdenum
4
molybdenum carbide-doped
4
carbide-doped epitope-imprinted
4
epitope-imprinted conductive
4
conductive polymers
4
polymers determination
4
determination soluble
4
tumorigenicity field
4

Similar Publications

Explore peptides extracted from gliadin hydrolysates suppressing BACE1 activity and restraining Aβ protein deposition.

Int J Biol Macromol

March 2025

Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404333, Taiwan; Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970374, Taiwan. Electronic address:

Alzheimer's Disease (AD) constitutes approximately 70 % of dementia cases and is the most prevalent form of dementia. Current therapeutic options, including acetylcholinesterase inhibitors and N-methyl d-aspartate (NMDA) receptor antagonists, provide symptomatic relief but do not cure the disease and often come with side effects. The primary pathological features of AD are amyloid plaques and neurofibrillary tangles, with amyloid plaques formed by the abnormal accumulation of Amyloid-β (Aβ).

View Article and Find Full Text PDF

In this work, several peptides of soluble suppression of tumorigenicity 2 (sST2) were screened, synthesized, and then imprinted with electropolymerization onto poly(aniline-co-3-aminobenzenesulfonic acid), poly(AN-co-MSAN). Three MXenes, including titanium or molybdenum carbides, were also doped within the conductive polymer film to enhance the electrochemical response. The electrodes were employed as the extended gate in a field-effect transistor (EG-FET) platform.

View Article and Find Full Text PDF

Decoy receptor 3 (DcR3), a soluble receptor in the tumor necrosis factor receptor superfamily, regulates the functions of monocytes, macrophages, dendritic cells, and T cells. Previous studies have demonstrated that DcR3 suppresses B cell proliferation in vitro and ameliorates autoimmune diseases in animal models; however, whether and how DcR3 regulates antibody production is unclear. Using a DcR3 transgenic mouse model, we found that DcR3 impaired the T cell-dependent antigen-stimulated antibody response.

View Article and Find Full Text PDF

Microplastics (MPs), as a global environmental issue, have unclear impacts on agricultural ecosystems. Cotton, as a major agricultural crop in Xinjiang, requires plastic film covering to ensure its yield. The widespread use of plastic film (commonly made of polyethylene) in cotton cultivation has led to significant concerns about microplastic pollution in cotton fields.

View Article and Find Full Text PDF

Classification of C-Type Lectins and Recognition of Pathogens.

Microbiol Immunol

March 2025

Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.

C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!