Climate change is increasingly driving extreme weather events, leading to drastic temperature fluctuations worldwide. While overall temperatures rise, many regions are simultaneously experiencing severe cold spells that threaten the health of human populations, especially to vulnerable populations including the elderly and those with pre-existing conditions. Exposure to cold stress triggers significant physiological and biochemical disruptions. As cardiovascular diseases (CVDs) rank among the leading causes of global morbidity and mortality, the exacerbation of these conditions by cold exposure underscores critical public health challenges. The complex pathophysiological processes in cold-induced CVDs require careful analysis at an organ-system level, making animal models an ideal tool for replicating human physiological and molecular responses in a controlled environment. However, a detailed mechanism linking cold exposure and cardiovascular dysfunction remains incompletely understood, particularly in the context of animal models. Therefore, this comprehensive review aims to address and analyze from traditional rodent models to less conventional ruminants, broilers, canines, and primate animal models to understand cold stress-induced CVDs, with an extensive account of the potential molecular mechanisms and pathways such as oxidative stress, inflammation, vasomotor dysfunction, and apoptosis, along with emerging roles of cold shock proteins (CSPs), etc. We also delve into various potential therapeutic approaches and preventive measures in cold stress conditions. In conclusion, this review is the first to comprehensively address the underexplored cardiovascular complications arising from cold stress and their underlying mechanisms, particularly using animal models. Furthermore, it provides a foundation for advancing the development of more effective and targeted therapies through translational research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.179028 | DOI Listing |
Ophthalmic Genet
March 2025
Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA.
The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox () transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:
Background: The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis.
View Article and Find Full Text PDFHandb Clin Neurol
March 2025
Institute of Neurology, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy. Electronic address:
Since several reviews have recently discussed the lateralization of emotions, this chapter will take into account the possible evolutionary meaning of this lateralization. The organization of the chapter will be based on the following steps. I will first propose that emotions must be considered as a complex adaptive system, complementary to the more phylogenetically advanced cognitive system.
View Article and Find Full Text PDFHandb Clin Neurol
March 2025
CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
Brain and behavioral asymmetries are widespread across the animal kingdom, suggesting that even simpler nervous systems benefit from such features. In the last 30 years, research conducted on several vertebrate (but also invertebrate) animal models has massively contributed to our understanding of the causation, development, evolution, and function of lateralization. Here, we review some of this research, highlighting the importance of studying this topic in nonprimate species for a deeper understanding of the mechanisms behind cerebral asymmetries.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008.
Objectives: Sleep deprivation (SD) is a risk factor for the development of chronic pain in adolescents, significantly affecting pain management and prognosis; however, the mechanisms by which SD influences postoperative pain outcomes remain unclear. This study aims to investigate the molecular mechanism through which the spinal 5-hydroxytryptamine 1 receptor (5-HT1R) regulates the excitation/inhibition (E/I) balance in the dorsal horn to modulate postoperative chronic pain induced by SD in adolescent mice.
Methods: A pain model combining 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!