A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease. | LitMetric

Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease.

Biomed Pharmacother

Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany. Electronic address:

Published: March 2025

Alzheimer's disease (AD) is a multifactorial disorder associated with neuroinflammation, elevated oxidative stress, lipid alterations as well as amyloid-deposits and the formation of neurofibrillary tangles. Ibuprofen, a globally used analgesic, is discussed to influence disease progression due to its anti-inflammatory effect. However, changes in lipid-homeostasis induced by Ibuprofen have not yet been analyzed. Here we investigate the effect of Ibuprofen on lipid classes known to be associated with AD. Ibuprofen treatment leads to a significant increase in phosphatidylcholine, sphingomyelin and triacylglyceride (TAG) species whereas plasmalogens, which are highly susceptible for oxidation, were significantly decreased. The observed alterations in phosphatidylcholine and sphingomyelin levels in presence of Ibuprofen might counteract the reduced phosphatidylcholine- and sphingomyelin-levels found in AD brain tissue with potential positive aspects on synaptic plasticity and ceramide-induced apoptotic effects. On the other hand, Ibuprofen leads to elevated TAG-level resulting in the formation of lipid droplets which are associated with neuroinflammation. Reduction of plasmalogen-levels might accelerate decreased plasmalogen-levels found in AD brains. Treatment of Ibuprofen in terms of lipid-homeostasis reveals both potentially positive and negative changes relevant to AD. Therefore, understanding the influence of Ibuprofen on lipid-homeostasis may help to understand the heterogeneous results of studies treating AD with Ibuprofen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117969DOI Listing

Publication Analysis

Top Keywords

ibuprofen
9
influence ibuprofen
8
associated neuroinflammation
8
phosphatidylcholine sphingomyelin
8
ibuprofen glycerophospholipids
4
glycerophospholipids sphingolipids
4
sphingolipids context
4
context alzheimer´s
4
alzheimer´s disease
4
disease alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!