Cold stress is a limiting factor for rice yield. Empirical evidence has demonstrated that arbuscular mycorrhizal fungi (AMF) can bolster the cold resilience of plants. In barren environments, AMF can promote host plant growth and resistance. However, whether the addition of mycorrhizal helper bacteria (MHB) can further enhance AMF's ability to improve cold tolerance in plants remains unclear. In this study, we set up an uninoculated group, a separately inoculated group, and a compound inoculated group and incubated rice at 25 °C until the three-leaf stage, and then each group was equally divided into four portions for treatment at 25 °C, 12 °C, 8 °C, and 4 °C, respectively. The results showed that: (1) Under cold stress conditions, the biomass of rice plants inoculated with AMF was significantly higher than that of the non-inoculated group; (2) AMF and MHB effectively activated the antioxidant enzyme system in rice plants and improved their osmoregulatory capacity under cold stress; (3) The presence of AMF and MHB stimulated and modulated the upregulation of genes related to photosynthesis and cold tolerance in rice plants, thereby enhancing their resilience against cold stress. Our findings corroborate that MHB can further enhance the cold tolerance of rice by promoting the functions of AMF. This study lays the foundation for expanding rice cultivation areas, and ensuring food production security.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.109741 | DOI Listing |
Plant Physiol Biochem
March 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:
Cold stress is a limiting factor for rice yield. Empirical evidence has demonstrated that arbuscular mycorrhizal fungi (AMF) can bolster the cold resilience of plants. In barren environments, AMF can promote host plant growth and resistance.
View Article and Find Full Text PDFHortic Res
April 2025
College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China.
Cold stress profoundly affects the growth, development, and productivity of horticultural crops. Among the diverse strategies plants employ to mitigate the adverse effects of cold stress, flavonoids have emerged as pivotal components in enhancing plant resilience. This review was written to systematically highlight the critical role of flavonoids in plant cold tolerance, aiming to address the increasing need for sustainable horticultural practices under climate stress.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2025
College of Tobacco, Guizhou University, Guiyang, China.
Cold stress-mediated reduced photosynthesis and osmotic stress severely endanger and limit plant development and crop yield. We investigated the expression of the NtPhyA (phytochrome A) gene in wild-type K326 and the defence response of PhyA knockout mutants under cold stress to monitor their physiological changes. PhyA mutants exhibited greater cold tolerance than wild-type (WT) plants, with lower levels of reactive oxygen species and malondialdehyde.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2025
Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
Macrococci are usually found as commensals on the skin and mucosa of animals and have been isolated from mammal-derived fermented foods; however, they can also act as opportunistic pathogens. Here, we used whole-genome sequencing, comparative genomics, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize sp. strains isolated from livestock and human-related specimens.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
Plant responses to abiotic stresses have a complex polygenic nature including main and epistatic genetic factors. Several tolerant rice varieties were subjected to drought, salt and cold stresses and their transcriptomic responses were evaluated using affymetrix probe set. Meta-analysis of standardized microarray data was conducted to identify specific and common genes responding to multiple abiotic stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!