Singlet oxygen (O) is the main active ingredient in photodynamic therapy (PDT). However, an excess O can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting O in biological systems. In this study, a pair of anthryl-modified Eu(III) binaphthol-bis-β-diketones helicates, (NEt)[Eu(L)] are designed, synthesized and characterized. Initially, the complexes display faint luminescence. Upon reacting with O to create endoperoxides of the anthracene framework, the long-lived luminescence of the Eu(III) complexes is activated. Notably, the high luminescence dissymmetry factor, g of the D → F transition (595 nm) shows an obvious increase from -1.21 to -1.29 before and after oxidation. The complex exhibits a highly selective luminescent response to the O generated by 5-aminolevulinic acid (ALA) loaded 4 T1 cells during photodynamic processes. To the best of we knowledge, this is the first example of O detection based on circularly polarized luminescence (CPL) probe. The design of the lanthanide CPL probe provides a practical way for the sensitive detection of O in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2025.112881 | DOI Listing |
J Inorg Biochem
March 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China. Electronic address:
Singlet oxygen (O) is the main active ingredient in photodynamic therapy (PDT). However, an excess O can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting O in biological systems.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Physics, Changzhi University, Changzhi 046011, China.
Metasurface-based longitudinal modulation introduces the propagation distance as a new degree of freedom, extending the light modulation with metasurfaces from 2D to 3D space. However, relevant longitudinal studies have been constrained to designing the metasurface of half-wave plate (HWP) meta-atoms and generating either non-focused or two-channel vortex and vector beams. In this study, we propose a metasurface composed of quarter-wave plate (QWP) meta-atoms to generate the longitudinal multi-channel focused vortex and vector beams.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Achieving ultrahigh-color-purity circularly polarized luminescence (CPL) in low-dimensional chiral perovskites is challenging due to strong electron-phonon coupling caused by lead halide octahedral distortion. Herein, the circularly polarized piezoluminescence behaviors of six novel chiral perovskites, (/-3-XPEA)PbBr (PEA = phenethylamine; X = F, Cl, Br), were systematically investigated. Upon compression, (/-3-ClPEA)PbBr exhibits significant piezofluorochromic behaviors, transforming from yellow CPL to ultrahigh-color-purity deep-blue CPL.
View Article and Find Full Text PDFACS Nano
March 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China.
Circularly polarized luminescence (CPL) systems exhibiting room-temperature phosphorescence (RTP) are attracting considerable attention for applications in information encryption and smart sensing. However, achieving ultralong circularly polarized RTP (CPRTP) with tunable chirality and stimuli-responsive CPL remains challenging. Inspired by the color-changing properties of the butterfly, we developed a cellulose nanocrystal (CNC)-based photonic crystal film with an ultralong RTP lifetime of 2.
View Article and Find Full Text PDFDalton Trans
March 2025
Shenzhen Institute of Information Technology, Shenzhen 518172, China.
Design strategies for chiral iridium(III) complexes with stable circularly polarized luminescent properties have emerged as important research topics in the field of organic photonics. Given the high rigidity, low chemical activity and multi-closed-loop structure of -camphor, its chirality cannot be easily affected. Furthermore, the introduction of indolo[3,2,1-]carbazole is beneficial for the narrow emission spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!