Endocrine disrupting chemicals (EDCs) have received significant attention in the food field due to their potential health risks. Herein, we proposed a novel core-shell structure magnetic cationic covalent organic framework (EB-DHTA-iCOF@FeO) designed for the efficient enrichment of trace-level EDCs in foodstuffs and analyzed using HPLC-MS/MS. Due to the phenolic EDCs structure possessing hydroxyl functional groups which become protonated under alkaline conditions, resulting in the formation of negatively charged anions. The EB-DHTA-iCOF@FeO positively charged surface can have a good enrichment effect on EDCs with phenolic structures through electrostatic interactions, π - π interactions, and hydrogen bonding. This unique combination of interactions enhances the iCOF ability to selectively capture and enrich phenolic EDCs from complex matrices, thereby improving the sensitivity and efficiency of their detection in analytical applications. Under optimal magnetic solid-phase extraction (MSPE) conditions, the method showed excellent linearity (5-250 μg kg, R ≥ 0.9993) and a low detection limit (0.03-1.2 μg kg) for phenolic EDCs, with recovery rates between 86.0 % and 106.8 % and a relative standard deviation under 5.8 %. The approach highlights the potential of the ionic covalent organic framework as an adsorbent for MSPE, offering a promising approach for the detection and analysis of trace-level EDCs in foodstuffs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2025.465827DOI Listing

Publication Analysis

Top Keywords

covalent organic
12
organic framework
12
phenolic edcs
12
magnetic cationic
8
cationic covalent
8
efficient enrichment
8
trace-level edcs
8
edcs foodstuffs
8
edcs
7
phenolic
5

Similar Publications

DprE1 Inhibitors: An insight into the recent developments and synthetic approaches.

Eur J Pharm Sci

March 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:

In the current medical era, the proliferation and dissemination of drug-resistant strains of Mycobacterium tuberculosis continue to pose a significant worldwide health hazard, necessitating the development of new and innovative medications to combat tuberculosis. Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) is a crucial enzyme for cell wall synthesis in Mycobacterium tuberculosis (Mtb). Its importance is due to its eminent contribution in forming lipoarabinomannan and arabinogalactan.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) have received significant attention in the food field due to their potential health risks. Herein, we proposed a novel core-shell structure magnetic cationic covalent organic framework (EB-DHTA-iCOF@FeO) designed for the efficient enrichment of trace-level EDCs in foodstuffs and analyzed using HPLC-MS/MS. Due to the phenolic EDCs structure possessing hydroxyl functional groups which become protonated under alkaline conditions, resulting in the formation of negatively charged anions.

View Article and Find Full Text PDF

FeMo integrated covalent organic frameworks: Peroxidase-mimetic colorimetric biosensors for multivariate sensing hydrogen peroxide and ascorbic acid in serum and beverages.

Food Chem

March 2025

Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:

An efficient and readable sensor is desirable for food safety and diagnosis. Herein, a homogeneous mimicking enzyme was constructed by encapsulating polyoxometalate (NH₄)₃[FeMo₆O₁₈(OH)₆]·6H₂O (FeMo) into the covalent organic framework (FeMo@COF). Coordinating the spatial confinement effect of COF, FeMo exhibited superior peroxide-like activity to catalyze HO to O• which achieved the "on-off" consecutive sensing of HO and AA via a readable colorimetric mode, with the limit of detection (LOD) at 30 μM and 0.

View Article and Find Full Text PDF

Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!