Polymeric nanocomposites in a biological interface: From a molecular view to final applications.

Colloids Surf B Biointerfaces

Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil. Electronic address:

Published: March 2025

Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome. For health applications, the nanocomposite systems were found to be most applied as antimicrobials, for tissue engineering, and for drug delivery. A plethora of biocompatible polymers have been reported, although for nanomaterials the most distinguished effects were attained with metal and metal oxide nanoparticles. The bioactivity of the nanocomposite was found to be dependent on features such as: colloidal size, release, and disintegration of the nanoparticle, controlled by the polymer matrix; hydrophilicity, degree of crosslinking, porosity, mechanical strength, and stability/responsiveness of the polymer, modified by the nanofiller; and the final charge and functional groups available at the whole nanocomposite surface. As a result, researchers can gather insights to design and characterize advanced polymeric nanocomposites with optimized performance for use in biomedical devices, drug delivery systems, and other therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2025.114605DOI Listing

Publication Analysis

Top Keywords

polymeric nanocomposites
12
biological interface
8
physical chemical
8
drug delivery
8
polymeric
4
nanocomposites biological
4
interface molecular
4
molecular view
4
view final
4
final applications
4

Similar Publications

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Polymeric nanocomposites in a biological interface: From a molecular view to final applications.

Colloids Surf B Biointerfaces

March 2025

Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil. Electronic address:

Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome.

View Article and Find Full Text PDF

Designing biomimetic substrates and electrodes for bioelectronic devices with the necessary mechanical, electrical, and biological properties is critical considering the potential mismatch between soft tissue and rigid electronics, where incompatibility leads to decreased device performance, delamination, inflammation, and discomfort. There is an unmet engineering and clinical need for epidermal bioelectronics that are bioinert, can emulate host tissue mechanical properties, demonstrate low bulk resistivity, and are flexible and scalable. To address this shortcoming, this work describes innovations pertaining to the development of a hydrophilic, biocompatible nanocomposite comprised of carbon black (CB), polyvinyl alcohol (PVA), and glycerol for neuro-muscular and rehabilitative applications.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is known for its high malignancy, limited clinical treatment options, and poor chemotherapy outcomes. Although some advancements have been made using nanotechnology-based chemotherapy for TNBC treatment, the controlled and on-demand release of chemotherapeutic drugs at the tumor site remains a challenge.

Methods: We manufactured DOX/BaTiO@cRGD-Lip (DBRL) nanoparticles as an ultrasound (US)-controlled release platform targeting the delivery of Doxorubicin (DOX) for TNBC treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in energy storage have led to the development of functional polymer-based nanocomposites for supercapacitors, which enhance capacitance, power density, and stability.
  • The incorporation of carbon-based materials with conductive polymers improves their properties, making them beneficial for advanced energy applications.
  • This review focuses on the potential and applications of nanocomposites made from polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) in supercapacitor technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!