Structure-based molecular hybridization design and synthesis of Keap1-Nrf2 inhibitors for anti-inflammatory treatment.

Bioorg Chem

School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai, China. Electronic address:

Published: March 2025

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway stands as a pivotal mechanism in defending against oxidative stress damage and related inflammation. Blocking the Keap1-Nrf2 protein-protein interaction (PPI) offers a promising therapeutic approach for treating diseases related to oxidative stress and inflammation. Our group previously reported NXPZ-2, a naphthalene sulfonamide derivative targeting Keap1, which effectively inhibits the Keap1-Nrf2 PPI, thereby releasing Nrf2 to exert its anti-inflammatory and antioxidant effects. In the present work, we employed a structure-based molecular hybridization strategy to design a series of novel naphthalene sulfonamides by combining NXPZ-2 with the Nrf2 activator dimethyl fumarate (DMF) or its analogues. Among these new derivatives, compound 1c, specifically (Z)-4-((4-(N-(2-amino-2-oxoethyl)-N-(4-((N-(2-amino-2-oxoethyl)-4-methoxyphenyl)sulfonamide)naphthalen-1-yl) sulfamoyl)phenyl)amino)-4-oxobut-2-enoic acid, exhibited the highest PPI inhibitory activity, with a K value of 0.119 μM. In an LPS-induced RAW264.7 cell model, this compound mitigated LPS-induced cellular damage, suppressed the expression of pro-inflammatory cytokine TNF-α and IL-6, and significantly elevated the intracellular GSH and SOD enzyme activities. Furthermore, in an LPS-induced acute lung injury (ALI) mouse model, the compound demonstrated a remarkable ability to alleviate oxidative damage and inflammation in the lungs. In conclusion, this novel naphthalene sulfonamide represents a promising drug candidate for Keap1-targeting therapy in ALI. Molecular docking analysis revealed that the amide and maleic acid groups of 1c facilitate strong interactions with the Kelch domain of Keap1, explaining the compound's preference for binding through hydrogen bonding and π-π stacking interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2025.108350DOI Listing

Publication Analysis

Top Keywords

structure-based molecular
8
molecular hybridization
8
oxidative stress
8
damage inflammation
8
naphthalene sulfonamide
8
novel naphthalene
8
model compound
8
hybridization design
4
design synthesis
4
synthesis keap1-nrf2
4

Similar Publications

Structure-based molecular hybridization design and synthesis of Keap1-Nrf2 inhibitors for anti-inflammatory treatment.

Bioorg Chem

March 2025

School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai, China. Electronic address:

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway stands as a pivotal mechanism in defending against oxidative stress damage and related inflammation. Blocking the Keap1-Nrf2 protein-protein interaction (PPI) offers a promising therapeutic approach for treating diseases related to oxidative stress and inflammation. Our group previously reported NXPZ-2, a naphthalene sulfonamide derivative targeting Keap1, which effectively inhibits the Keap1-Nrf2 PPI, thereby releasing Nrf2 to exert its anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

Computable properties of selected monomeric acylphloroglucinols with anticancer and/or antimalarial activities and first-approximation docking study.

J Mol Model

March 2025

Faculty of Science, Engineering and Agriculture, University of Venda, University Road, Thohoyandou, 0950, South Africa.

Context: Malaria and cancer tend to become drug-resistant a few years after a drug is introduced into clinical use. This prompts the search for new molecular structures that are sufficiently different from the drugs for which resistance has developed. The present work considers eight selected acylphloroglucinols (ACPLs) with proven antimalarial and/or anticancer activities.

View Article and Find Full Text PDF

Sortase A (SrtA), a cysteine transpeptidase critical for surface protein anchoring in Gram-positive pathogens, represents an attractive antivirulence target. While covalent SrtA inhibitors show therapeutic potential, existing compounds lack species selectivity. Through structure-guided design, we developed T10, a covalent inhibitor selectively targeting Streptococcus pyogenes SrtA (SpSrtA) over Staphylococcus aureus SrtA (SaSrtA).

View Article and Find Full Text PDF

Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene with a unique saturated terminal pendant isopentane.

View Article and Find Full Text PDF

The Discovery of Gadopiclenol: An Example of Rational Drug Design?

Invest Radiol

March 2025

From the Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Equipe Chimie Moléculaire, Conservatoire National des Arts et Métiers, Paris, France.

Gadopiclenol was initially developed as a high-relaxivity, nonspecific magnetic resonance imaging contrast agent to enhance image quality and thereby improve diagnostics. This design required a highly demanding Drug Target Profile, addressing not only relaxivity but also factors such as physicochemical properties of the injectable solution (viscosity, osmolality, heat sterilization compatibility), pharmacokinetics and toxicity, particularly related to the stability of the complex. These considerations led to a multiparametric molecular design based on a gadolinium complex characterized by the following features: (1) a macrocyclic, nonionic structure based on the PCTA framework with 2 water molecules in the inner sphere; (2) the introduction of steric constraints around the gadolinium to enhance stability and reduce relaxivity quenching by endogenous ions; (3) slowed rotational diffusion due to gadolinium's position at the center of the complex; and (4) the incorporation of 3 hydrophilic amino polyol pendant arms to ensure aqueous solubility, reduce binding with endogenous proteins, and enhance product safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!