Girgentana goats are an ancient breed with distinctive morphological, adaptive, and production traits, making this population an interesting model for studying the genetic architecture underlying these traits. These special features result from natural and human-mediated selection. In this study, we aimed to detect potential signatures of selection in the Girgentana genome by combining the following statistical methods: the integrated haplotype score (iHS), the standardised log-ratio of the integrated site-specific extended haplotype homozygosity test between pairs of populations (Rsb), the runs of homozygosity (ROH) islands and the population differentiation index (F). A composite dataset of 206 Girgentana and 334 animals from 13 goat populations across Northern and Southern Italy was analysed. All animals were genotyped using an Illumina Goat medium-density BeadChip. Multidimensional scaling and neighbour-joining analyses revealed a clear separation of the three major clades, coinciding with Girgentana, Northern, and Southern Italian goats. Twelve regions putatively under selection were detected using iHS and Rsb, whereas 16 hotspot regions were identified using F and ROH. Notably, a candidate region on chromosome 01 was consistently identified in all four tests. This region, along with other candidate regions, includes several genes associated with adaptive immunity, reproduction, and body size traits. The Girgentana breed showed signals of ongoing selection in a region of chromosome 6 encompassing several milk quality genes, such as caseins (CSN2, CSN1S2, and CSN3). Our study provides a glimpse into the genomic regions harbouring genes that presumably affect the desired features of Girgentana. This highlights the importance of ancient breeds in providing essential genetic traits for adapting livestock to increasing climate change challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.animal.2025.101466 | DOI Listing |
Animal
February 2025
Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy. Electronic address:
Girgentana goats are an ancient breed with distinctive morphological, adaptive, and production traits, making this population an interesting model for studying the genetic architecture underlying these traits. These special features result from natural and human-mediated selection. In this study, we aimed to detect potential signatures of selection in the Girgentana genome by combining the following statistical methods: the integrated haplotype score (iHS), the standardised log-ratio of the integrated site-specific extended haplotype homozygosity test between pairs of populations (Rsb), the runs of homozygosity (ROH) islands and the population differentiation index (F).
View Article and Find Full Text PDFFront Plant Sci
February 2025
Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru.
Peruvian maize exhibits abundant morphological diversity, with landraces cultivated from sea level (sl) up to 3,500 m above sl. Previous research based on morphological descriptors, defined at least 52 Peruvian maize races, but its genetic diversity and population structure remains largely unknown. Here, we used genotyping-by-sequencing (GBS) to obtain single nucleotide polymorphisms (SNPs) that allow inferring the genetic structure and diversity of 423 maize accessions from the genebank of Universidad Nacional Agraria la Molina (UNALM) and Universidad Nacional Autónoma de Tayacaja (UNAT).
View Article and Find Full Text PDFJ Eukaryot Microbiol
March 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
Ciliates represent a diverse assemblage of ancient single-celled eukaryotes characterized by diverse morphological features. Among certain sessilid peritrich ciliates, an exceptional morphological structure known as the stalk has been documented since the pioneering work of Antonie van Leeuwenhoek in the 17th century. This study conducts a comparative genomic analysis of three sessile peritrich species-Epistylis sp.
View Article and Find Full Text PDFCommun Biol
March 2025
Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
Horse domestication revolutionizes human civilization by transforming transportation, agriculture, and warfare patterns. Despite extensive studies on modern domestic horse origins, the intricate demographic history and genetic signatures underlying pony size remain unexplored. Here, a high-quality genome assembly of the Chinese Debao pony is presented, and 452 qualified individuals from 64 horse breeds worldwide are extensively analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!