Racing dromedary camels are widely distributed across the Arabian Peninsula, predominantly concentrating in its northern and southeastern regions. Phenotypically, they are differentiated from other dromedary types, characterised by their smaller body size, longer limbs, reduced hump size, and thinner chest girth. In this study, the whole genome sequences of 34 racing camels were analysed to assess their genetic relationship with non-racing populations, estimate levels of inbreeding, calculate Wier and Cockerham's fixation index (Fst), assess effective population size (N), and identify candidate regions with signatures of positive selection. Both racing and non-racing camels exhibited comparable levels of genomic inbreeding (F = 0.21), with no significant genetic differentiation detected between them. The estimated Fst value between the two camel groups also revealed minimal genetic differentiation. A declining trend was observed in N estimations of both groups over the past 5 000 years, with slightly lower recent N in racing camels compared to their non-racing counterparts. Signatures of positive selection in the genomes of racing camels were identified through the application of two haplotype-based statistics, namely the integrated haplotype homozygosity score (iHS) and extended haplotype homozygosity between-populations (Rsb), along with runs of homozygosity (ROH) analysis. A total of 33 regions under selection were detected via iHS, 19 via Rsb, and 24 through ROH. Candidate regions under selection were found to overlap with genes involved in diverse biological pathways potentially linked to athletic performance, e.g., musculoskeletal development, lipid metabolism, stress response, bone integrity, as well as endurance and power. These findings provide a foundation for further exploration of the racing dromedary genome, with the goal of defining variants and haplotypes that might be associated with athletic traits. Such insights could assist the development of genetically informed breeding programmes aimed at developing specialised racing dromedary lines, contributing to the broader understanding and preservation of animal athletic performance and selection in domesticated species worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2025.101467DOI Listing

Publication Analysis

Top Keywords

racing camels
16
positive selection
12
racing dromedary
12
racing
8
linked athletic
8
athletic traits
8
candidate regions
8
signatures positive
8
genetic differentiation
8
haplotype homozygosity
8

Similar Publications

Racing dromedary camels are widely distributed across the Arabian Peninsula, predominantly concentrating in its northern and southeastern regions. Phenotypically, they are differentiated from other dromedary types, characterised by their smaller body size, longer limbs, reduced hump size, and thinner chest girth. In this study, the whole genome sequences of 34 racing camels were analysed to assess their genetic relationship with non-racing populations, estimate levels of inbreeding, calculate Wier and Cockerham's fixation index (Fst), assess effective population size (N), and identify candidate regions with signatures of positive selection.

View Article and Find Full Text PDF

Rationale: LGD-4033, a selective androgen receptor modulator (SARM), is recognized for promoting muscle growth and enhancing athletic performance. Its potent anabolic effects have led to its prohibition in both human and animal sports. Although initial in vitro studies have offered insights into its metabolism, an in-depth in vivo analysis is necessary to fully understand its metabolic pathways.

View Article and Find Full Text PDF

The Dromedary camel has a remarkable history amongst cultures across Asia and northern Africa, serving multiple purposes ranging from providing milk, textiles, racing, and acting as pack animals. Recent genetic studies have revealed that many dromedaries are genetically homogenous, indicating that they do not represent different breeds, advocating for camel 'type' over camel 'breed'. In this study, we leveraged whole genome sequencing (WGS) to sequence 15 Jordanian Alia camels for the first time, alongside 9 Jordanian mixed camels from diverse locations within the country.

View Article and Find Full Text PDF

Rationale: The use of benzimidazole-class novel psychoactive substances has significantly increased worldwide raising concerns about potential misuse and doping in animal sports such as camel racing. Understanding the metabolism of these substances is critical for developing reliable detection methods to ensure fair competition and animal welfare.

Methods: In vitro studies were conducted using homogenized camel liver samples to replicate metabolic processes.

View Article and Find Full Text PDF

First report of a chemokine from camelids: Dromedary CXCL8 is induced by poxvirus and heavy metal toxicity.

Dev Comp Immunol

December 2024

Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates. Electronic address:

Low molecular weight proteins, known as chemokines, facilitate the migration and localization of immune cells to the site of infection and injury. One of the first chemokines identified, CXCL8 functions as a key neutrophil activator, recruiting neutrophils to sites of inflammation. Several viral infections, including zoonotic coronaviruses and poxviruses, have been reported to induce the expression of CXCL8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!