Unraveling the potential of microalgal-bacterial granular sludge (MBGS) technology for sustainable treatment of ciprofloxacin (CIP)-laden wastewater and mitigation of antibiotic resistance genes (ARGs) remains limited. This study evaluated the performance of bacterial granular sludge (BGS) and MBGS systems in terms of nutrient and CIP removal, granular stability, and ARG attenuation under long-term exposure to CIP for the first time. While both systems achieved effective pollutant removal at low CIP concentrations (0.1 and 0.5 mg/L), MBGS demonstrated superior resilience and efficiency under high CIP loads (10 mg/L). Notably, MBGS improved phosphorus removal by 32.71 %, achieved a 70.42 μg/(g-SS)/d greater CIP removal and maintained structural integrity, unlike BGS, which disintegrated under oxidative stress. The microalgae species (Pseudoneochloris and Chlamydopodium) could effectively resist various concentrations of CIP. Additionally, the relative abundance of ARGs in MBGS was 30.91 % lower than that in BGS, suggesting that microalgae in MBGS system could reduce ARG production. Overall, these findings improve our understanding of the role of microalgae in enhancing CIP remediation and controlling ARG propagation in MBGS systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137811DOI Listing

Publication Analysis

Top Keywords

granular sludge
12
microalgal-bacterial granular
8
mbgs systems
8
cip removal
8
mbgs
7
cip
7
unraveling stress
4
stress responses
4
responses microalgal-bacterial
4
granular
4

Similar Publications

There is increasing awareness of the presence of anticancer drugs (ACDs) in wastewater. Nonetheless, how ACDs affect the performance of wastewater treatment systems and their microbial populations remains largely unclear. This study investigated the effects of three common ACDs (cyclophosphamide, tamoxifen, and methotrexate) at varying concentrations on physicochemical parameters and drug removal efficiency in an aerobic granular sludge (AGS) system operated in a continuous-flow reactor.

View Article and Find Full Text PDF

Unraveling the potential of microalgal-bacterial granular sludge (MBGS) technology for sustainable treatment of ciprofloxacin (CIP)-laden wastewater and mitigation of antibiotic resistance genes (ARGs) remains limited. This study evaluated the performance of bacterial granular sludge (BGS) and MBGS systems in terms of nutrient and CIP removal, granular stability, and ARG attenuation under long-term exposure to CIP for the first time. While both systems achieved effective pollutant removal at low CIP concentrations (0.

View Article and Find Full Text PDF

Impaired denitrification of aerobic granules in response to micro/nanoplastic stress: Insights from interspecies interactions and electron transfer processes.

Water Res

March 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.

The accumulation of micro/nanoplastics in wastewater significantly hinders denitrification in biological wastewater treatment systems, yet the intrinsic mechanisms are not fully understood. Herein, we combined signal molecule monitoring, electrochemical characterization and multi-omics analysis to investigate how quorum sensing (QS)-mediated microbial interactions influence denitrification in aerobic granular sludge systems. Results showed that after 90-day exposure to micro/nanoplastics, cross-talk between multiple signal molecules significantly declined, thereby disrupting the QS system to opportunely sense changes in the external environment.

View Article and Find Full Text PDF

In this paper, a set of mathematical tools are developed and assembled to quantify, predict and virtually assess NO emission mitigation strategies in partial nitritation (PN) / anammox (ANX) granular based reactors. The proposed approach is constructed upon a set of data pre-treatment methods, process simulation models, control tools (and algorithms) and key performance indicators to analyze, reproduce, and forecast the behavior of multiple operational variables within aerobic granular sludge systems. All these elements are tested on two full-scale data sets (#D1, #D2) collected over a period of four months (Sept-Dec 2023).

View Article and Find Full Text PDF

Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions.

Water Res

February 2025

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!