Engineering active sites on catalyst surface to enhance selective oxidation pathways in advanced oxidation processes (AOPs) is key to the efficient removal of pollutants. In this work, a method of loading bimetallic ions and simultaneously activating the surface of swine manure biochar using cetyltrimethylammonium bromide (CTAB) was developed. By applying SiO templating method to increase the surface area and pore size of the catalyst, this study prepared a copper-iron-loaded layered porous catalyst (CFBC-0.5/1) with abundant active centers was successfully prepared. Characterisation results demonstrated that the distinctive layered porous structure enhanced the defect degree and carbonyl group (CO) content of the biochar, thereby exposing a greater number of metal active sites. The exchange effect of Cu-Fe accelerated the activation rate of the peroxymonosulfate (PMS), which facilitated the generation of more active species. Furthermore, CFBC-0.5/1 demonstrated exceptional efficiency, achieving over 90 % tetracycline (TC) removal even under challenging conditions involving varying pH levels and competing ions. This renders it a promising catalyst for practical applications. Quenching experiments and electron paramagnetic resonance (EPR) tests revealed that singlet oxygen (O) was the primary active species. Additionally, electrochemical experiments demonstrated that the electron transfer between the modified bimetallic-loaded catalyst and PMS was significantly enhanced, which promoted the activation of PMS during the degradation process. It was found that the electron transfer and O-dominated non-radical pathway occupied the whole degradation process. This work provides significant insights for the development of efficient biochar catalysts and the targeted activation of non-radical pathways in AOPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.137262 | DOI Listing |
Chemosphere
March 2025
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China.
Clarifying the stability and co-transport of environmental colloids and radionuclides in porous media is crucial, as they pose potential risks to nuclear environmental safety. However, there is limited knowledge of the significant role of protein corona in Eu(III) transport carried by bentonite colloids (BC) in the presence of bovine serum albumin (BSA). The protein corona mediated the stability and co-transport behaviors of BC and Eu(III) in saturated quartz columns were investigated, and a ripening adsorption co-transport model (RACM) was established to qualitatively describe the Eu(III) transport by composited colloids.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China; College of Geography and Environment, Shandong Normal University, Jinan 250358, China. Electronic address:
Engineering active sites on catalyst surface to enhance selective oxidation pathways in advanced oxidation processes (AOPs) is key to the efficient removal of pollutants. In this work, a method of loading bimetallic ions and simultaneously activating the surface of swine manure biochar using cetyltrimethylammonium bromide (CTAB) was developed. By applying SiO templating method to increase the surface area and pore size of the catalyst, this study prepared a copper-iron-loaded layered porous catalyst (CFBC-0.
View Article and Find Full Text PDFAnal Bioanal Chem
March 2025
Department of Chemistry, The Women University, Multan, Pakistan.
Monoliths are versatile materials with diverse applications, and their performance can be enhanced through modifications, including the use of metal-organic frameworks (MOFs). Modified monoliths improve separation and analytical processes in various fields, with different modification methods offering distinct benefits and challenges. Directly adding MOF crystals to the polymerization mixture is straightforward and time effective, but it often results in poor dispersion and compositional heterogeneity, which compromises consistency and reproducibility, particularly in bioanalytical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Northwest Institute for Nonferrous Metal Research, Xi'an, Shannxi 710016, China.
Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
Migration of implanted self-expandable metallic stent (SEMS) in the malignant or benign esophageal stricture is a common complication but not yet resolved. Herein, this research develops a hydrogel-impregnated robust interlocking nano connector (HiRINC) to ensure adhesion and reduce the mechanical mismatch between SEMSs and esophageal tissues. Featuring a network-like porous layer, HiRINC significantly enhances adhesion and energy dissipation during esophageal peristalsis by utilizing mechanical interlocking and increasing hydrogen bonding sites, thereby securing SEMS to tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!