An efficient approach to probe bioactive components of herbal patches by 2D-carbon microfiber fractionation and multi-chamber membrane separation electrophoresis: Spatholobus suberectus Dunn as a case.

J Pharm Biomed Anal

College of Pharmacy, Yanbian University, Yanji 133002, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China. Electronic address:

Published: March 2025

Herbal patches are widely used in clinics for their good curative effects. However, due to the complexity of plant matrices and the extremely low content of transdermal components, the individuation of their effective bioactive compounds represents a challenge: there is then a great need for an efficient method to reveal the bioactive ingredients of herbal patches. In this work, a wide-screening approach is proposed to an individuation of transdermal bioactive components in herbal patches obtained by Spatholobus suberectus Dunn (S. suberectus). Using a two-dimensional microscale carbon fiber/active carbon fiber system combined with a quadrupole time-of-flight high-resolution mass spectrometry (2DµCFs-QTOF-HRMS), a rapid and comprehensive analysis, lasting only 5 min, allowed the identification of 45 distinct polar components within S. suberectus extracts. Among these, 30 components exhibited a transdermal penetration estimated at values higher than 10 %. The key target, predicted by bioinformatics, was prostaglandin-endoperoxide synthase 2 (PTGS2). From the transdermal components of S. suberectus, four potential inhibitors of PTGS2 (protocatechuic acid, isoliquiritigenin, medicarpin, and catechin) were screened by multi-chamber membrane separation electrophoresis (MCMSE). The presence of binding pockets and action sites for medicarpin, isoliquiritigenin, and catechin determines higher binding energy towards PTGS2, with lower IC values (12.27, 9.08, and 41.68 μM, respectively). The high-throughput and high-sensitivity analysis by 2DµCFs-QTOF-HRMS, combined with a high-accuracy screening of MCMSE, provides strong technical support for the discovery of trace transdermal bioactive components of herbal patches. The integration of the two technologies could accelerate the study of action mechanisms, quality control, and product improvement of herbal patches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2025.116791DOI Listing

Publication Analysis

Top Keywords

herbal patches
24
bioactive components
12
components herbal
12
multi-chamber membrane
8
membrane separation
8
separation electrophoresis
8
spatholobus suberectus
8
suberectus dunn
8
transdermal components
8
transdermal bioactive
8

Similar Publications

An efficient approach to probe bioactive components of herbal patches by 2D-carbon microfiber fractionation and multi-chamber membrane separation electrophoresis: Spatholobus suberectus Dunn as a case.

J Pharm Biomed Anal

March 2025

College of Pharmacy, Yanbian University, Yanji 133002, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China. Electronic address:

Herbal patches are widely used in clinics for their good curative effects. However, due to the complexity of plant matrices and the extremely low content of transdermal components, the individuation of their effective bioactive compounds represents a challenge: there is then a great need for an efficient method to reveal the bioactive ingredients of herbal patches. In this work, a wide-screening approach is proposed to an individuation of transdermal bioactive components in herbal patches obtained by Spatholobus suberectus Dunn (S.

View Article and Find Full Text PDF

Background: Despite the high prevalence and socioeconomic burden of chronic cough, there has been an unmet medical need. Acupuncture may be promising for treating chronic cough with various pathophysiologies involving several neurotransmission mechanisms. We aimed to systematically compile evidence on the effect and safety of acupuncture-related therapy for chronic cough.

View Article and Find Full Text PDF

Natural Extract-Loaded Herbal Patches: Assessment for Biomedical Application.

Recent Adv Drug Deliv Formul

January 2025

Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus- 226025, Uttar Pradesh, India.

Introduction And Objective: Medicinal plants like Moringa and Selaginella have gained attention for their potential in wound healing including antimicrobial and antioxidant attributes. Extracts from these plants have shown promise in accelerating wound healing processes, enhancing fibroblast cell proliferation and migration, and providing antioxidant benefits. The objective of this work was to assess the therapeutic potential of extracts loaded patches for biomedical applications.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of aromatherapy and acupoint herbal patching on fatigue and sleep disorders in people living with HIV (PLWH). Aromatherapy and acupoint herbal patching are ancient alternative therapies in traditional Chinese medicine. We randomly selected 90 patients from the Nanjing Public Health Medical Center in China and divided them into three groups: aromatherapy group, acupoint herbal patching group and control group.

View Article and Find Full Text PDF

Duhuo Jisheng Mixture attenuates neuropathic pain by inhibiting S1PR1/P2YR pathway after Chronic Constriction Injury in mice.

Phytomedicine

March 2025

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:

Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.

Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!