Antibiotic resistance has been recognized as one of the most prevalent public health problems. The bioaerosol-mediated spread of antibiotic resistance genes (ARGs) is an important but underrated pathway. Therefore, this work investigated the comprehensive resistome and pathogen-induced risk in bioaerosols released from anaerobic ammonium oxidation (anammox) process under antibiotic stress. The results showed that the bioaerosol oxidation potential increased by 2.7 times after the addition of sulfamethoxazole (SMX) into the anammox system. Based on the metagenomic analyses, abundant ARGs were enriched in bioaerosols, especially novA, olec, msbA and patA. There were many antibiotic resistance contigs carrying at least two mobile genetic elements (MGEs) in bioaerosols. Compared to the control, SMX caused the significant increase in ARGs proportion in plasmids from 11.4 % to 19.4 %. Similarly, the abundance of the type IV secretion system protein encoding genes (mtrA and mtrB) increased by 30.2 % and 31.5 %, respectively, which was conducive to gene transfer between bacteria. In addition, SMX stress induced the reactive oxygen species (ROS) production and the upregulation of genes related to membrane protein and DNA replication, further facilitating ARGs transfer. The co-occurrence networks showed that Aquamicrobium and Microbacterium probably were the hosts of most ARGs. Notably, four abundant human pathogens were detected in bioaerosols from the anammox system, which raised concerns on the health risk of resistant bioaerosol diffusion. These findings reveal the potential of horizontal gene transfer through bioaerosols and provide a guidance for systematically assessing the risk of environmental antibiotic resistance and relevant pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123463DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
resistance genes
8
bioaerosols released
8
released anaerobic
8
anammox system
8
gene transfer
8
antibiotic
6
bioaerosols
6
resistance
5
args
5

Similar Publications

Synergistic antibacterial effects of pinaverium bromide and oxacillin against .

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: () adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a -type calcium channel blocker, and oxacillin (OXA) against .

Methods: Clinical isolates of were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University.

View Article and Find Full Text PDF

This study aims to isolate and identify both diseased and healthy fish pathogens of Ctenopharyngodon idella, Labeo rohita and Oreochromis niloticus and assess their antibacterial and biofilm supressing activities against fish pathogens. It explores their potential to inhibit and degrade biofilms, serving as an alternative to antibiotics in aquaculture while enhancing fish health and disease resistance. Furthermore, the research endeavors to assess the biofilm degradation potential of antibiotics and probiotics, both individually and in combination.

View Article and Find Full Text PDF

Objectives: Carbapenem-resistant Citrobacter spp. (CRC) are increasingly recognized as healthcare-associated pathogens, while systematic studies on clinical epidemiology, genetic diversity, and resistant mechanisms of CRC are relatively scarce. The present study provides comprehensive and systematic research on CRC.

View Article and Find Full Text PDF

Objectives: ;Antimicrobial stewardship programs (ASP) aim to improve the quality of medical prescribing and contain antimicrobial resistance (AMR). There is little information on the implementation of ASP in hospitals in Mexico. This study aimed to characterize ASP in a sample of hospitals in Mexico and to identify the facilitators and barriers perceived in their implementation, including the COVID-19 pandemic.

View Article and Find Full Text PDF

Characterization of Klebsiella pneumoniae Carbapenemase (KPC)-14, a KPC Variant Conferring Resistance to Ceftazidime-Avibactam in the Extensively Drug-resistant ST463 Pseudomonas aeruginosa Clinical Isolate.

J Glob Antimicrob Resist

March 2025

Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

Objectives: We studied two Klebsiella pneumoniae carbapenemase (KPC)-14 variants from clinical Pseudomonas aeruginosa isolates (C137 and C159) to better understand the genomic diversity, mechanisms, and genes that confer antibiotic resistance and pathogenicity.

Methods: Genomic DNA from C137/159 was subjected to Illumina and Oxford Nanopore sequencing. Horizontal transmission of the plasmid was evaluated using cloning experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!