Ammonia (NH) and nitrous oxide (NO) release are the main causes of nitrogen loss during aerobic composting. In this study, hyperthermophilic aerobic composting of refinery waste activated sludge (RWAS) was performed by adding extreme thermophilic bacteria, and the effects of inoculation on NH and NO emissions were systematically studied. The results revealed that inoculation achieved hyperthermophilic aerobic composting (T group), increased maturity, and reduced NH and NO emissions by 32.36% and 10.17%, respectively. The results of microbial network analysis and structural equation modeling revealed that inoculation altered the mechanisms influencing NH and NO release. Nitrogen genes and dominant bacteria were positively correlated with NH and NO release during conventional composting (CK group), whereas dominant bacteria and physicochemical factors were the main factors affecting NH and NO release during hyperthermophilic composting(T group). The correlation between the dominant bacteria and the release of NH and NO was weakened in the hyperthermophilic aerobic composting system, resulting in a decrease in the release of the above gases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124870DOI Listing

Publication Analysis

Top Keywords

aerobic composting
20
hyperthermophilic aerobic
16
dominant bacteria
12
extreme thermophilic
8
composting refinery
8
refinery waste
8
waste activated
8
activated sludge
8
revealed inoculation
8
composting group
8

Similar Publications

Solid waste based manufactured soil - Stabilization of "organics-microorganisms-inorganic skeleton" and performance evaluation.

Waste Manag

March 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

The safe disposal and utilization of bulk solid waste (SW) are critical challenges. Manufactured soil, a soil-like material composed of SW, offers a novel solution for resource recycling. However, the mechanisms underlying SW-based manufactured soil fertility development remain unclear.

View Article and Find Full Text PDF

Extreme thermophilic microbial inoculation for reducing NH and NO emissions in hyperthermophilic aerobic composting of refinery waste activated sludge.

J Environ Manage

March 2025

State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.

Ammonia (NH) and nitrous oxide (NO) release are the main causes of nitrogen loss during aerobic composting. In this study, hyperthermophilic aerobic composting of refinery waste activated sludge (RWAS) was performed by adding extreme thermophilic bacteria, and the effects of inoculation on NH and NO emissions were systematically studied. The results revealed that inoculation achieved hyperthermophilic aerobic composting (T group), increased maturity, and reduced NH and NO emissions by 32.

View Article and Find Full Text PDF

The community succession mechanisms and interactive dynamics of microorganisms under high salinity and alkalinity conditions during composting.

J Environ Manage

March 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

Microorganisms drive organic matter degradation and humification during composting. However, the mechanisms underlying microbial community succession and their interactions under saline-alkali stress are poorly understood. In this study, we investigated the microbial community assembly processes and microbial niche dynamics during composting in the high-saline-alkaline region.

View Article and Find Full Text PDF

Changing the form of the electric field in the electric field-assisted aerobic composting (EAC) system from direct current to alternating current is confirmed as a potential strategy to enhance compost humification to the level of hyperthermophilic composting. This study pioneered the comparative evaluation of the effects of different electric field forms on the immobilization and phytotoxicity of heavy metals during composting. The results demonstrated that the humic acid content and humification index of alternating electric field-assisted aerobic composting (AEFAC) were approximately 22.

View Article and Find Full Text PDF

New insights into Peniophora crassitunicata and its co-inoculation with commercial microbial inoculant accelerating lignocellulose degradation and compost maturation during orchard wastes composting.

Environ Res

March 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. Electronic address:

Lignocellulosic composting has been widely promoted in the utilization of agricultural wastes, while few focus on orchard lignocellulosic wastes in the fruit industry. Peniophora is a laccase hyper-producer highly efficient in lignin degradation, yet its application in lignocellulosic composting has not been investigated. Here, an aerobic composting experiment was conducted to investigate the effects of inoculation with Peniophora crassitunicata and a commercial microbial inoculant (mainly Bacillus and Aspergillus) on grape (Vitis Vinifera L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!