Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets. The electrosprayed and chemically reduced rGO films enhance the molecular detection in GFET sensors through significant local gating effects. The device detects the N-protein from the SARS-CoV-2 Omicron variant in a culture medium with an LOD of 1.44 PFU/mL and in clinical oropharyngeal samples with an LOD of 45 genome copies/mL in 5 min. It also successfully detects viral RNA in oropharyngeal swabs within 10 min. The GFET sensor responses were further analyzed using our proprietary wireless, miniaturized, and portable FET analyzer, coupled with a smartphone detecting app. Altogether, we present low-cost and mass-producible GFETs with high-quality graphene channels, enabling a portable, efficient, and accurate solution for point-of-care pathogen detection and in clinical testing. This technology has the potential to become a crucial tool in preventing future global epidemic outbreaks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c03049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!