For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion. The present study aims to investigate the regulation of the gene expression in U87MG glioblastoma cells by hypoxia and glucose or glutamine deprivations depending on the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1) with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. The U87MG glioblastoma cells (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (4 h). For glucose and glutamine deprivations, the cells were exposed to DMEM medium without glucose and glutamine, respectively, for 16 h. The expression level of the gene was studied by quantitative RT-PCR and normalized to the ACTB mRNA. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to down-regulation of gene expression in glioblastoma cells. Moreover, the expression of this gene was also decreased after silencing ERN1 in glioblastoma cells. At the same time, the expression of gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the gene was increased under hypoxia in control U87MG cells, but resistant to hypoxia in cells with ERN1 knockdown. Furthermore, the expression of this gene was up-regulated under glucose and glutamine deprivations in control glioblastoma cells. However, the ERN1 knockdown increased the sensitivity of gene expression to glucose and decreased to glutamine deprivations. The results of the present study demonstrate that inhibition of ERN1 down-regulated the expression of the gene through protein kinase activity of ERN1 and that the regulation of this gene expression by hypoxia and nutrient supply, especially glucose, is differently controlled by ERN1 in glioblastoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.2478/enr-2025-0001DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
28
gene expression
20
expression gene
20
glucose glutamine
16
glutamine deprivations
16
ern1
14
expression
12
cells
12
regulation gene
12
ern1 knockdown
12

Similar Publications

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples.

Sci Adv

March 2025

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.

View Article and Find Full Text PDF

Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression.

View Article and Find Full Text PDF

Although every cell biologist knows the importance of selecting the right growth conditions and it is well known that the composition of growth medium may vary depending on a product brand or lot affecting many cellular processes, still those effects are poorly systematized. We addressed this issue by comparing the effect of 12 fetal bovine sera (FBS) and eight growth media from different brands on the morphological and functional parameters of five cell types: lung adenocarcinoma, neuroblastoma, glioblastoma, embryonic kidney, and colorectal cancer cells. Using high-throughput imaging, we compared cell proliferation; performed morphological profiling based on the imaging of 561,519 cells; measured extracellular regulated kinases (ERK1/2) activity, mitochondria potential, and lysosome accumulation; and compared cell sensitivity to drugs, response to EGF stimulation, and ability to differentiate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!