We studied a family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal centre. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions. In contrast, bichromophoric species, containing phenyl bipyridine- (3, 5, 6, 8) or terpyridine- (4, 7) derived platinum(II) fragments, demonstrate fast intersystem crossing to the triplet state associated with the pincer metal component. Corroborated by theoretical results, we successfully demonstrated that the short intramolecular distance between the platinum constituent and the adjacent anthracene facilitates subsequent through-space triplet (T2, pincer fragment)→triplet (T1, anthracene) energy transfer. This process occurs at a rate of ~1011 s-1, surpassing the rates of T2→S0 relaxation. This prevents visible phosphorescence from the platinum(II) motifs but enables near-IR organic phosphorescence in the solid state, including dyes with very inefficient intersystem-crossing (ISC). Thus, the composite molecules 3-8 illustrate a feasible approach to the tunable sensitization of organic dyes and the design of low-energy triplet emitters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202503327 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
University of Eastern Finland, Deaprtment of Chemistry, Yliopistokatu 7, 80101, Joensuu, FINLAND.
We studied a family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal centre. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
School of Physics, University of Hyderabad, Hyderabad 500046, India.
In emulsions of multicomponent fluids, the dispersed phase forms tiny droplets in the continuous phase. In situ control and manipulation to achieve diversity in emulsion droplets for emerging applications is challenging. In a liquid crystal-based emulsion, the surface anchoring of the molecules at the isotropic fluid-liquid crystal interface introduces elastic distortions that result in anisotropic interparticle interactions, similar to electrostatic interactions between multipoles, which also lends a naming analogy as elastic dipoles, quadrupoles, and higher.
View Article and Find Full Text PDFMol Biol Cell
March 2025
Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
Intraflagellar transport (IFT) coordinates the transport of cargo in cilia and is essential for ciliary function. CILK1 has been identified as a key regulator of IFT. The mechanism by which it acts has, however, remained unclear.
View Article and Find Full Text PDFACS Nano
March 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
To surmount the shortcomings of powder-based catalysts and small electrode sizes, the development of meter-scale integrated electrode materials is essential for practical electrocatalytic applications, which requires fine control over the effective surface grafting of catalytic active sites on large-size electrodes as well as addressing the challenge of balancing cost-effective and large-scale manufacturing with highly active and stable operation. Herein, we report a low-cost, facile, and scalable method for directly constructing meter-scale single-molecule-integrated catalytic electrodes using commercially available, flexible, and size-tailored conductive carbon textiles (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!