Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells. Uninterrupted immune-suppressive therapy is required because drug discontinuation triggers allograft rejection, replicating the requirement for immune-suppressive therapy adherence in transplant recipients. Graft-specific CD8+ T cells in allograft-accepted mice show diminished effector differentiation and cytokine production, with reciprocally increased PD1 expression. Allograft acceptance-induced PD1 expression is essential, as PDL1 blockade reinvigorates graft-specific CD8+ T cell activation with ensuing allograft rejection despite continual immune-suppressive therapy. Thus, PD1 sustained CD8+ T cell inhibition is essential for allograft acceptance maintained by tacrolimus plus mycophenolate. This necessity for PD1 in sustaining allograft acceptance explains the high rates of rejection in transplant recipients with cancer administered immune checkpoint inhibitors targeting PD1/PDL1, highlighting shared immune suppression pathways exploited by tumor cells and current therapies for averting allograft rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jimmun/vkae007 | DOI Listing |
J Immunol
January 2025
Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.
Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.
View Article and Find Full Text PDFAnn Vasc Surg
March 2025
Department of Vascular and Endovascular Surgery, Nancy University Hospital, University of Lorraine, Nancy, France; INSERM UMR 1116 DCAC, University of Lorraine, Nancy, France.
Background: Infectious aortic aneurysms (IAA) are a rare but life-threatening condition due to their rapid development. Their management is multidisciplinary. The main purpose of this study was to evaluate the mortality of patients treated for AIA by different types of treatments.
View Article and Find Full Text PDFClin Microbiol Rev
March 2025
Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA.
SUMMARYTransplant recipients require lifelong, multimodal immunosuppression to prevent rejection by dampening alloreactive immunity. These treatments have long been known to lack antigen specificity. Despite empirically selected long-term immunosuppression regimens, most allografts succumb to alloimmune responses that result in chronic inflammation and scarring.
View Article and Find Full Text PDFTransplant Direct
March 2025
Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!