Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.59 s, and a quantum yield of 18.14% was successfully prepared. Experimental results show that the dense 3D boron oxide network formed after heat treatment, along with the B-O covalent bonds and O→B coordination bonds between the host and guest, effectively suppresses nonradiative transitions through both physical and chemical confinement. More importantly, the oxygen vacancy defects formed in the doped material during heat treatment, combined with the charge-separated states generated in the guest molecules upon irradiation, together facilitated the long-range charge migration process. In addition, the charge recombination is accompanied by long-lived phosphorescence emission. Finally, the prepared URTP materials exhibit potential applications in the encryption and decryption of information in security fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c00196 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
School of Chemistry and Environment, Changchun University of Science and Technology, Changchun 130022, China.
Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, 58 Lushan Rd., Yuelu District, Changsha, 410006, Hunan, People's Republic of China.
Background: Asian cancer patients have become the highest morbidity and mortality group, and gastrointestinal tumors account for the majority of them, so it is urgent to find effective targets. Therefore, ferroptosis-related lncRNAs models were established to predict the prognosis and clinical immune characteristics of GI cancer.
Methods: RNA sequencing and clinical data were collected from the TCGA database (LIHC, STAD, ESCA, PAAD, COAD, CHOL, and READ) of patients with gastrointestinal cancer in Asia.
Aging Dis
March 2025
Medical School of Chinese PLA, Beijing, China.
Osteoarthritis (OA) is the most common musculoskeletal disease globally and is the main reason for the chronic pain and disability in people over sixty-five worldwide. Degradation of the articular cartilage, synovial inflammation and osteophyte formation are widely acknowledged as the primary pathological manifestations of OA. OA affects more than 300 million people all over the world, bringing extremely large socioeconomic burden.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
View Article and Find Full Text PDFJ Mater Chem B
March 2025
Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
The integration of second near-infrared (NIR-II) fluorescence imaging and photothermal therapy (PTT) achieved precise and efficient tumor treatment. BODIPY, a promising fluorescent dye, is widely used in biological fluorescence imaging due to its excellent optical properties and chemical stability. However, the excitation wavelengths of BODIPY typically range from 530 nm to 650 nm within the visible spectrum, which significantly limits tissue penetration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!