The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The four large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The four small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated. Here, we report that Cyt b6f was destabilized by the loss of PetN, one of the small subunits, in a petN mutant (ΔpetN) of Anabaena variabilis ATCC 29413 and that the amount of the large subunits of Cyt b6f decreased to 20-25% of that in the wild-type. The oxygen evolution activity of ΔpetN was approximately 30% of that from the wild-type, and the activity could largely be restored by the addition of N,N,N', N'-tetramethyl-p-phenylenediamine (TMPD), which functions as an electron carrier and bypasses Cyt b6f. Both linear and cyclic electron transfer of the mutant became partially insensitive to the Cyt b6f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). Although the plastoquinone (PQ) pool was largely reduced in ΔpetN under normal light conditions, the mutant had a substantially higher PSII/PSI ratio than the wild-type. State transitions in ΔpetN were abolished, as revealed by 77K fluorescence spectra and room temperature fluorescence kinetics in the presence of TMPD. Our findings strongly suggest that Cyt b6f is required for state transitions in the cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiaf094DOI Listing

Publication Analysis

Top Keywords

cyt b6f
36
state transitions
12
subunits cyt
12
b6f
11
cyt
9
cytochrome b6f
8
anabaena variabilis
8
linear cyclic
8
cyclic electron
8
oxygenic photosynthesis
8

Similar Publications

The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The four large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The four small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated.

View Article and Find Full Text PDF

Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.

View Article and Find Full Text PDF

While numerous studies explored the response of walnut plants to drought stress (DS), there remains a significant gap in the knowledge regarding the impact of heat stress (HS) and the combined effects of DS and HS on the recovery capacity of walnut trees. This study aimed to investigate the mechanism of Persian walnut (cv. Chandler) response to the combined DS and HS, focusing on various aspects including photosynthesis, water relations, and osmotic regulation.

View Article and Find Full Text PDF

Proton Gradient Regulation 5 determines reserve partitioning between starch and lipids in C. reinhardtii.

Physiol Plant

September 2024

CEA, CNRS, Aix-Marseille Université, UMR 7265, BIAM, Photosynthesis and Environment Team, CEA Cadarache, Saint-Paul-lez-Durance, France.

Nutrient deprivation induces reserve accumulation in unicellular algae. An absence of nitrogen in the growth media results in the reorganization of the photosynthetic apparatus and triggers an increase in starch and triacylglyceride (TAG) accumulation in different algal species. Here we study the integration of photosynthetic regulatory mechanisms with carbon partitioning under N stress in C.

View Article and Find Full Text PDF

Natural variation in photosynthetic electron transport of wheat flag leaves in response to dark-induced senescence.

J Photochem Photobiol B

October 2024

Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Early leaf senescence affects photosynthetic efficiency and limits growth during the late production stage of winter wheat (Triticum aestivum). Natural variation in photosystem response to senescence represents a valuable resource for improving the aging traits of flag leaves. To explore the natural variation of different phases of photosynthetic electron transport in modern wheat cultivars during senescence, we exposed the flag leaves of 32 wheat cultivars to dark conditions to induce senescence process, and simultaneously measured prompt fluorescence and modulated 820 nm reflection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!