Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples. We identified genome subcompartmentalization and chromatin interactions specific to GBM, as well as extensive intertumoral and intratumoral heterogeneity at these levels. We identified copy number variants (CNVs) and structural variations (SVs) and demonstrated how they disrupted 3D genome structures. SVs could not only induce enhancer hijacking but also cause the loss of enhancers to the same gene, both of which contributed to gene dysregulation. Our findings provide insights into the GBM-specific 3D genome organization and the intratumoral heterogeneity of this organization and open avenues for understanding this devastating disease.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adn2830DOI Listing

Publication Analysis

Top Keywords

genome organization
12
intratumoral heterogeneity
12
gbm-specific genome
8
heterogeneity
5
spatial genome
4
organization
4
organization reveals
4
reveals intratumor
4
intratumor heterogeneity
4
heterogeneity primary
4

Similar Publications

The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.

View Article and Find Full Text PDF

Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples.

Sci Adv

March 2025

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.

View Article and Find Full Text PDF

Background And Aims: Morphological differences between the two genetically close wild radishes, Raphanus raphanistrum and R. pugioniformis, include differences in fruit structure that influence their dispersal ability and within population spatial structure. Here, we tested within- and among-populations genetic variation, hypothesizing that (i) short-distance dispersal of heavy fruits in R.

View Article and Find Full Text PDF

Preserving the Biologically Coherent Generic Concept of , 'Plant Destroyer'.

Phytopathology

March 2025

Mendel University in Brno, Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Zemědělská 3, 613 00 Brno, Brno, Czech Republic, 613 00;

is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from at least twice. Since, cladistically, this renders 'paraphyletic', it has been proposed that evolutionary clades be split into multiple genera (Runge et al.

View Article and Find Full Text PDF

The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

February 2025

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!