Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit. LIPT1 covalently conjugates mitochondrial 2-ketoacid dehydrogenases with lipoic acid, facilitating enzymatic functions involved in the tricarboxylic acid cycle. Inhibiting lipoylation, either through genetic LIPT1 knockout or a lipoylation inhibitor (CPI-613), enhanced tumor control by radiation. Mechanistically, lipoylation inhibition increased 2-hydroxyglutarate, leading to H3K9 trimethylation, disrupting TIP60 recruitment and ataxia telangiectasia mutated (ATM)-mediated DNA damage repair signaling, impairing homologous recombination repair. In summary, our findings reveal a critical role of LIPT1 in regulating DNA damage and chromosome stability and may suggest a means to enhance therapeutic outcomes with DNA-damaging agents.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adt1241DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
dna damage
12
lipoylation inhibition
8
homologous recombination
8
damage repair
8
lipoylation
5
radiation
5
inhibition enhances
4
enhances radiation
4
radiation control
4

Similar Publications

Objectives: To assess the prognostic impact of adequate lymphadenectomy and determine the optimal nodal assessment for different clinical stages of lung cancer.

Methods: We retrospectively reviewed 1214 patients with clinical stage I-III non-small cell lung cancer who had preoperative PET/CT and curative surgery (2006-2017). Patients were categorized based on whether they had adequate [R0] or inadequate lymphadenectomy [R(un)].

View Article and Find Full Text PDF

Objectives: Compare oncologic outcomes between single-segment and multi-segment resections in patients with clinical stage IA1 and IA2 non-small cell lung cancer.

Methods: A retrospective review (2011-2022) was conducted using a prospectively maintained database. Patients undergoing anatomical segmentectomy for clinical stage IA ≤ 2 cm non-small cell lung cancers were included.

View Article and Find Full Text PDF

Lung cancer stands as the leading cause of cancer-related death worldwide, impacting both men and women in the United States and beyond. Radiation therapy (RT) serves as a key treatment modality for various lung malignancies. Our study aims to systematically assess the prognosis and influence of RT on metabolic reprogramming in patients diagnosed with nonsmall-cell lung cancer (NSCLC) through longitudinal metabolic profiling.

View Article and Find Full Text PDF

Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.

View Article and Find Full Text PDF

Intrabronchial delivery of therapeutic agents is critical to the treatment of respiratory diseases. Targeted delivery is demanded because of the off-target accumulation of drugs in normal lung tissues caused by inhalation and the limited motion dexterity of clinical bronchoscopes in tortuous bronchial trees. Herein, we developed microrobotic swarms consisting of magnetic hydrogel microparticles to achieve intrabronchial targeted delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!