Enhanced activity and self-regeneration in dynameric cross-linked enzyme nanoaggregates.

Sci Adv

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China.

Published: March 2025

Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity. In addition, they also demonstrated the ability to promote the reversible refolding of the partially or completely denatured lipase. The catalytic efficiency is completed with its more convenient handling of dynameric nanoparticles facilitating the efficient recovery and reuse of the enzyme with cost-effective uses. Molecular simulation studies revealed an in-depth understanding of how the dynamer action mechanism affects the conformational changes of lipase. The dynamer served as an effective hydrophobic support, facilitating the lid opening and substrate access to the catalytic triad, resulting in a substantial activation with an improved stability and recyclability of the lipase.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.ads9371DOI Listing

Publication Analysis

Top Keywords

catalytic activity
8
enhanced activity
4
activity self-regeneration
4
self-regeneration dynameric
4
dynameric cross-linked
4
enzyme
4
cross-linked enzyme
4
enzyme nanoaggregates
4
nanoaggregates directed
4
directed evolution
4

Similar Publications

The direct catalytic C-H functionalization of aromatic compounds such as anisoles and thioanisoles is of great interest and significance. However, achieving precise regioselectivity remains a major challenge. In this study, we conducted comprehensive density functional theory calculations to explore the mechanisms of rare-earth-catalyzed regioselective C-H alkylation, borylation, and silylation of anisole and thioanisole.

View Article and Find Full Text PDF

Visible-Light-Driven Methanol-To-Ethanol Conversion via Carbene Pathway by Frustrated Lewis Pairs.

J Am Chem Soc

March 2025

Department of Chemistry, and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

Carbenes are critical intermediates in organic chemistry, recognized for their exceptional reactivity and versatility. However, conventional methods for carbene generation are often associated with safety risks and hazardous procedures. This study presents a Ga-ZnO nanosheets photocatalyst with a (100) preferred orientation, featuring abundant refined frustrated Lewis pair (FLP) sites, excellent light absorption, and efficient charge transport properties.

View Article and Find Full Text PDF

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

Organocatalyzed Diels-Alder Reactions: Unexplored Hydrogen Bond Donor Catalysts.

Chempluschem

March 2025

Vrije Universiteit Amsterdam, Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, NETHERLANDS, KINGDOM OF THE.

We have quantum chemically investigated the catalytic effect of hydrogen bonding organocatalysts, (H2N)2C=X (X = O, S, Se, NH, PH, AsH, CH2, SiH2 GeH2), such as urea, on the classic Diels-Alder reaction. All studied hydrogen bond donor catalysts enhance the Diels-Alder reaction between acrolein and 1,3-butadiene to a similar extent. Our activation strain and Kohn-Sham molecular orbital analyses show that these organocatalysts lower the reaction barrier by polarizing the p-orbitals away from the reactive carbon atoms of acrolein, reducing the Pauli repulsion between the reactants.

View Article and Find Full Text PDF

The Outstanding Ambiphilicity of Trialkylstibines among Trialkylpnictines: Power for Stepwise Deoxygenation and N-N Coupling of Nitroarenes.

J Am Chem Soc

March 2025

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China.

The ongoing discovery of highly reactive ambiphilic main-group species has significantly advanced the development of main-group chemistry, particularly in the realms of small molecule activation and catalysis. Theoretically, compounds featuring smaller HOMO-LUMO gaps gain stronger ambiphilicity and higher reactivity. In this work, we fundamentally demonstrate that MeSb holds the smallest HOMO-LUMO gap among trimethylpnictines, indicating its outstanding ambiphilicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!