Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption. A series of tests reveals the strong resonance coupling, TSS-induced hot electron injection, and plasmon-induced hot hole relaxation within the hybrids, endowing the BiSe/CuS with excellent photothermal performance. By integrating the hybrids into a hydrogel with a thermoelectric module, the BiSe/CuS evaporator achieves a remarkable water evaporation rate of 3.67 kilograms per square meter per hour with a solar-to-vapor efficiency of 95.2%, and a maximum output power of 1.078 watts per square meter under simulated sunlight irradiation. Moreover, a conical mirror was introduced to the device, which greatly enhances the evaporation rate and maximum output power without additional energy input.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adt2884DOI Listing

Publication Analysis

Top Keywords

strong interaction
8
interaction plasmon
8
plasmon topological
8
topological surface
8
surface state
8
bise/cus nanowires
8
photothermal applications
8
photothermal performance
8
evaporation rate
8
square meter
8

Similar Publications

While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.

View Article and Find Full Text PDF

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Strong interaction between plasmon and topological surface state in BiSe/CuS nanowires for solar-driven photothermal applications.

Sci Adv

March 2025

Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption.

View Article and Find Full Text PDF

Ultra-confined plasmons reveal moiré patterns in a twisted bilayer graphene-talc heterostructure.

Nanoscale

March 2025

Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, 13083-970, Brazil.

This work investigates the plasmonic properties of a twisted bilayer graphene (TBG) and talc heterostructure. Talc, a naturally occurring phyllosilicate, promotes p-type charging of graphene, supporting high charge mobility and strong interaction between graphene plasmons and talc's phonon polaritons. This interaction results in the formation of surface plasmon-phonon polariton (SP) modes, which are detected using infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) at room temperature.

View Article and Find Full Text PDF

SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.

Biochem Genet

March 2025

Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.

Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!