Carbohydrate-responsive element binding protein (ChREBP) and Max-like protein X (MLX) form a heterodimeric transcription factor complex that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called carbohydrate-responsive element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated remains poorly understood. Here, we show that MLX phosphorylation on an evolutionarily conserved motif is necessary for the heterotetramer formation on the ChoRE and the transcriptional activity of the ChREBP-MLX complex. We identified casein kinase 2 (CK2) and glycogen synthase kinase 3 (GSK3) as MLX kinases. High intracellular glucose-6-phosphate accumulation inhibits MLX phosphorylation and heterotetramer formation on the ChoRE, impairing ChREBP-MLX activity. Physiologically, MLX phosphorylation is necessary in to maintain sugar tolerance and lipid homeostasis. Our findings suggest that MLX phosphorylation is a key mechanism for the ChREBP-MLX heterotetramer formation to regulate carbohydrate and lipid metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adt4548 | DOI Listing |
Sci Adv
March 2025
Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Carbohydrate-responsive element binding protein (ChREBP) and Max-like protein X (MLX) form a heterodimeric transcription factor complex that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called carbohydrate-responsive element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated remains poorly understood.
View Article and Find Full Text PDFbioRxiv
September 2024
Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
The heterodimeric ChREBP-MLX transcription factor complex is a key mediator that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called Carbohydrate Responsive Element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated, remains poorly understood.
View Article and Find Full Text PDFMetabolism
July 2023
Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, UK. Electronic address:
Background And Aim: Enhanced hepatic de novo lipogenesis (DNL) has been proposed as an underlying mechanism for the development of NAFLD and insulin resistance. Max-like protein factor X (MLX) acts as a heterodimer binding partner for glucose sensing transcription factors and inhibition of MLX or downstream targets has been shown to alleviate intrahepatic triglyceride (IHTG) accumulation in mice. However, its effect on insulin sensitivity remains unclear.
View Article and Find Full Text PDFBMC Cancer
February 2023
Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077, Xi'an, Shaanxi, China.
Background: Hepatocellular carcinoma (HCC) is associated with a high occurrence, mortality, and poor prognosis. MLX interacting protein like (MLXIPL) is an important regulator of glucolipid metabolism and is involved in tumor progression. We aimed to clarify the role of MLXIPL in HCC and its underlying mechanisms.
View Article and Find Full Text PDFChem Biol Drug Des
May 2021
The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.
Thioredoxin-interacting protein (TXNIP) overexpression is implicated in the pathogenesis of type 2 diabetes. Previous studies have shown that a small molecule compound (W2476) was able to improve β-cell dysfunction and exert therapeutic effects in diabetic mice via repression of TXNIP signaling pathway. The impact of W2476 on TXNIP transcription was thus investigated using the chromatin immunoprecipitation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!