In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear. We developed an assay to visualize GLI2, the primary GLI activator isoform, at single-particle resolution within the cilium. We found that GLI2 is a cargo of intraflagellar transport (IFT) machinery. Anterograde-biased IFT loading of GLI2 in a restricted time window following pathway activation results in the tip accumulation of GLI2. Unexpectedly, we found that the conserved Hh regulator KIF7, a nonmotile kinesin, is important for the temporal control of IFT-mediated GLI2 transport and retention of GLI2 at the cilium tip. Our findings underscore a design principle where a cilia-specific cytoskeletal transport system and an Hh pathway-specific cytoskeletal protein collaboratively regulate GLI2 trafficking for Hh signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adt5439 | DOI Listing |
Sci Adv
March 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear.
View Article and Find Full Text PDFGenes Dis
May 2025
Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China.
Bone morphogenetic protein 9 (BMP9) has remarkable potential to induce the differentiation of mesenchymal stem cells (MSCs) towards the osteoblastic lineage. Additionally, research suggests that certain growth factors have the ability to potentiate BMP9-induced osteogenic differentiation of MSCs. Sonic Hedgehog (Shh) plays an indispensable role in the regulation of skeletal development.
View Article and Find Full Text PDFEBioMedicine
March 2025
Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland. Electronic address:
Background: Oligogenic inheritance has been suggested as a possible mechanism to explain the broad phenotype observed in individuals with differences of sex development (DSD) harbouring NR5A1/SF-1 variants.
Methods: We investigated genetic patterns of possible oligogenicity in a cohort of 30 individuals with NR5A1/SF-1 variants and 46,XY DSD recruited from the international SF1next study, using whole exome sequencing (WES) on family trios whenever available. WES data were analysed using a tailored filtering algorithm designed to identify rare variants in DSD and SF-1-related genes.
Int J Med Sci
March 2025
School of Dental Technology, College of Oral Medicine, Taipei Medical University Taipei 11031, Taiwan.
Trigonelline (TGN), an alkaloid identified in medicinal plants such as coffee (Coffea spp.) and fenugreek (Trigonella foenum-graecum), has demonstrated significant anticancer properties across various malignancies, yet its efficacy in bladder cancer (BLCA) remains underappreciated. This study investigates TGN's role in modulating cancer stem cells (CSCs) and the tumor microenvironment (TME), two key contributors to BLCA progression and chemoresistance.
View Article and Find Full Text PDFCell Oncol (Dordr)
February 2025
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.
Purpose: Malignant melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. We reported that both Hedgehog-GLI (HH/GLI) and Mitogen-activated protein Kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) pathways promote melanoma growth, and that ERK5 activation is required for HH/GLI-dependent melanoma cell proliferation. Here, we explored whether ERK5 regulates HH/GLI signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!