Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis. Here, we address this discrepancy by investigating the capacity of murine AMs for direct innate immune sensing, using LPS as a model. Use of LPS-coated fluorescent beads enabled us to distinguish between directly exposed and bystander cells to measure transcriptional responses, by RNA-sequencing after cell sorting, and cytokine responses, by flow cytometry. We find that AMs have decreased proinflammatory responses to low-dose LPS compared to other macrophage types (bone marrow-derived macrophages, peritoneal macrophages), as measured by TNF, IL-6, Ifnb, and Ifit3. The reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. We also find that AMs do not produce IL-10 in response to a variety of stimuli due to low expression of the transcription factor c-Maf, while exogenous c-Maf expression restores IL-10 production in AMs. Lastly, we show that lack of IL-10 enables type I IFN enhancement of AM responses to LPS. Overall, we demonstrate AMs have a cell-intrinsic hyporesponsiveness to LPS, which makes them uniquely tolerant to low-dose exposure. Regulation of AM innate responses by distinct CD14, c-Maf, and IL-10 expression patterns has important implications for both respiratory infections and environmental airborne exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jimmun/vkae029DOI Listing

Publication Analysis

Top Keywords

c-maf il-10
8
il-10 enables
8
enables type
8
type ifn
8
ifn enhancement
8
innate responses
8
responses lps
8
alveolar macrophages
8
ams
8
proinflammatory responses
8

Similar Publications

Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that mediate rapid antimicrobial immune responses to antigens derived from microbial riboflavin pathway metabolites presented by the evolutionarily conserved MR1 molecules. MAIT cells represent a large pre-expanded T cell subset in humans and are involved in both protective immunity and inflammatory immunopathology. However, what controls the functional heterogeneity of human MAIT cell responses is still largely unclear.

View Article and Find Full Text PDF

Background: The role of B cells in antitumor immunity remains controversial, with studies suggesting the protumor and antitumor activity. This controversy may be due to the heterogeneity in B cell populations, as the balance among the subtypes may impact tumor progression. The immunosuppressive regulatory B cells (Breg) release interleukin 10 (IL-10) but only represent a minor population.

View Article and Find Full Text PDF

Antimalarial Drug Artemotil Promotes Induction of Type 1 Regulatory T Cells.

Inflammation

November 2024

Centre for Immuno-Biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.

Artemisinin and its derivatives, used as front-line anti-malarial drugs, exhibit anti-inflammatory properties. They were found to suppress the generation and function of Th1 and Th17 cells while promoting the generation of Foxp3 + regulatory T cells (Tregs). However, the specific role of Artemotil (β-arteether) in modulating the generation and functions of CD4 + T cells, particularly Type 1 regulatory T cells (Tr1), remains to be explored.

View Article and Find Full Text PDF

Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!