In this research, nineteen (19) samples were collected and analyzed with the following objectives: to evaluate the activity concentration of radionuclides, assess gamma absorption, determine indoor radon concentration, and evaluate the public health impact of building materials used in Katsina State, Nigeria. The study aimed to provide critical data that would inform safe construction practices and regulatory compliance. Samples were sourced locally from various quarry sites, while materials such as cement, paint, tiles, and ceiling materials were purchased from local markets. The methodology involved measuring radionuclide activity concentrations using gamma-ray spectroscopy with a Thallium-doped Sodium Iodide (NaI (Tl)) detector, a highly sensitive method suitable for detecting gamma emissions from radionuclides. Radon gas was identified as the primary radiation source. Results revealed varying activity concentrations of radionuclides across different building materials. Most samples, except for Gravel, Brown Clay (Zone A and C), Kaolin, and Fired Clay Bricks, were below the recommended limits for radionuclide. Similarly, for , except for Cement and Thatch, samples were generally below the average value of 35 Bq/kg. However, several samples including Gravel, Paint, Brown Clay (Zones A, B, C), Thatch, Mud Clay, Laterite, Neem tree, Limestone, Fired Clay Bricks, and Gypsum exceeded the average value of 30 Bq/kg for . The overall average activity concentrations across samples were : 232.421, : 11.791, and : 51.1858 all in Bq/kg. The average Radium equivalent and Gamma index was 113.8 Bq/kg and 0.22, respectively, with an alpha index of 0.11. The external and internal hazard indexes averaged 0.2292 and 0.3102, indicating that these materials pose no significant radiological health risk when used in construction, as all values are below international guidelines of 370 Bq/kg and 1 mSv/y. This study concludes with a recommendation for public awareness on the effects of radiation and the need for continued monitoring and regulation of radiation exposure. The significance of this study lies in its contribution to public health and safety, supporting regulatory compliance and helping to prevent potential health risks associated with construction materials.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318497 | PLOS |
ACS Sens
March 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.
View Article and Find Full Text PDFLangmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFLangmuir
March 2025
Tianjin Building Materials Group (Holding) Corporation, Tianjin 300381, China.
Diethanolamine (DEA) can be used not only as a cement admixture but also to capture carbon dioxide (CO). However, the waste liquid treatment still faces the problems of high energy consumption and increasing environmental burden. The effects of DEA waste liquid (WL-DEA) with multiple cycles of CO absorption and desorption on the setting time, hydration temperature, mechanical strength, and microstructure of cement-based materials were explored.
View Article and Find Full Text PDFPLoS One
March 2025
Medical Physics and Radiation Sciences Program, School of Physics, Universiti Sains MalaysiaPenang, Malaysia.
In this research, nineteen (19) samples were collected and analyzed with the following objectives: to evaluate the activity concentration of radionuclides, assess gamma absorption, determine indoor radon concentration, and evaluate the public health impact of building materials used in Katsina State, Nigeria. The study aimed to provide critical data that would inform safe construction practices and regulatory compliance. Samples were sourced locally from various quarry sites, while materials such as cement, paint, tiles, and ceiling materials were purchased from local markets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
School of Physics, University of Hyderabad, Hyderabad 500046, India.
In emulsions of multicomponent fluids, the dispersed phase forms tiny droplets in the continuous phase. In situ control and manipulation to achieve diversity in emulsion droplets for emerging applications is challenging. In a liquid crystal-based emulsion, the surface anchoring of the molecules at the isotropic fluid-liquid crystal interface introduces elastic distortions that result in anisotropic interparticle interactions, similar to electrostatic interactions between multipoles, which also lends a naming analogy as elastic dipoles, quadrupoles, and higher.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!