We evaluated the in vivo therapeutic efficacy and tolerability of BI-3406-mediated pharmacological inhibition of SOS1 in comparison to genetic ablation of this universal Ras-GEF in various KRAS-dependent experimental tumor settings. Contrary to the rapid lethality caused by SOS1 genetic ablation in SOS2 mice, SOS1 pharmacological inhibition by its specific inhibitor BI-3406 did not significantly affect animal weight/viability nor cause noteworthy systemic toxicity. Allograft assays using different KRAS cell lines showed that treatment with BI-3406 impaired RAS activation and RAS downstream signaling and decreased tumor burden and disease progression as a result of both tumor-intrinsic and -extrinsic therapeutic effects of the drug. Consistent with prior genetic evidence and the KRAS allografts assays in immunocompromised mice, our analyses using an in vivo model of KRAS-driven lung adenocarcinoma (LUAD) in immunocompetent mice showed that single, systemic BI-3406 treatment impaired tumor growth and downmodulated protumorigenic components of the tumor microenvironment comparably to SOS1 genetic ablation or to treatment with the specific KRAS inhibitor MRTX1133. Furthermore, markedly stronger, synergistic antitumor effects were observed upon concomitant treatment with BI-3406 and MRTX1133 in the same in vivo LUAD mouse model. Our data confirm SOS1 as an actionable therapy target in RAS-dependent cancers and suggest that BI-3406 treatment may yield clinical benefit both as monotherapy or as a potential combination partner for multiple RAS-targeting strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2422943122 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Laboratorio 1. Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Salamanca 37007, Spain.
We evaluated the in vivo therapeutic efficacy and tolerability of BI-3406-mediated pharmacological inhibition of SOS1 in comparison to genetic ablation of this universal Ras-GEF in various KRAS-dependent experimental tumor settings. Contrary to the rapid lethality caused by SOS1 genetic ablation in SOS2 mice, SOS1 pharmacological inhibition by its specific inhibitor BI-3406 did not significantly affect animal weight/viability nor cause noteworthy systemic toxicity. Allograft assays using different KRAS cell lines showed that treatment with BI-3406 impaired RAS activation and RAS downstream signaling and decreased tumor burden and disease progression as a result of both tumor-intrinsic and -extrinsic therapeutic effects of the drug.
View Article and Find Full Text PDFMed Oncol
March 2025
School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion.
View Article and Find Full Text PDFPertussis resurged over the last decade in most countries that replaced the traditional whole-cell pertussis vaccines (wP) by the less reactogenic acellular pertussis vaccines (aP). The aP vaccines induce a Th2-polarized immune response and by a yet unknown mechanism hamper the clearance of from infected nasopharyngeal mucosa. The aP-induced pertussis toxin-neutralizing antibodies effectively prevent the life-threatening pertussis pneumonia in infants, but aP-elicited immunity fails to prevent infection of nasopharyngeal mucosa and transmission of .
View Article and Find Full Text PDFJ Dent Res
March 2025
Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore. Center to Advance Chronic Pain Research, Baltimore, MD, USA.
Multiple sensory afferents, including mechanosensitive and nociceptive nerves, are projected to the periodontium. Peptidergic afferents expressing transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin, mediate pain caused by orthodontic forces. However, their role in orthodontic force-induced alveolar bone remodeling is poorly understood as is the contribution of mechanosensitive ion channels such as Piezo2 in nociceptive nerves.
View Article and Find Full Text PDFNat Metab
March 2025
Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
Lung adenocarcinoma (LUAD) is an aggressive cancer defined by oncogenic drivers and metabolic reprogramming. Here we leverage next-generation spatial screens to identify glycogen as a critical and previously underexplored oncogenic metabolite. High-throughput spatial analysis of human LUAD samples revealed that glycogen accumulation correlates with increased tumour grade and poor survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!