PLoS One
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Published: March 2025
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity. Although these studies have shown that methylation improves DNA binding, the underlying mechanism of enhancement of polymerase activity in terms of structure and dynamics remains poorly understood. To address this gap, we modeled the methylated enzyme/DNA complex and conducted a microsecond-long simulation in the presence of Mg ions. Our results revealed significant structural changes induced by methylating both R83 and R152 sites in the enzyme. Specifically, these changes caused the DNA fragment to move closer to the C- and N-subdomains, forming additional hydrogen bonds. Furthermore, the cross-correlation map demonstrated that methylation enhanced long-range correlations within the domains/subdomains of DNA polymerase β, along with an increase in the linear mutual information value between the domains/subdomains and DNA fragments. The graph connectivity network also illustrated that methylation modulates the information pathway and identifies residues exhibiting long-distance coupling with the methylated sites. Our results provide an atomic-level understanding of the structural transition induced by methylation, shedding light on the mechanisms underlying the methylation-induced enhancement of activity in DNA polymerase β.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318614 | PLOS |
Plant Dis
March 2025
College of science, King Saud University, Department of Botany and Microbiology, Riyadh, Riyadh, Saudi Arabia;
Banana (Musa spp.) is widely cultivated as the major fruit in Pakistan. Anthracnose fruit rot caused by various Colletotrichum spp.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Due to the severe shortage of donor corneas for transplantation in China, corneal component transplantation may expand the available donor pool. This study aims to evaluate the safety and feasibility of corneal component transplantation by examining the distribution of hepatitis B surface antigen (HBsAg) in corneas from HBsAg-seropositive donors under different storage media.
Methods: Ten corneas (from 6 donors) donated between December 2019 and March 2021 and stored at the Eye Bank of Xiangya Third Hospital, Central South University, were analyzed.
Schizophr Res
March 2025
Department of Psychiatry, University of Botswana, Gaborone, Botswana.
There are indications that the transient blockade of the dopamine receptor D2 (DRD2) by atypical antipsychotics such as risperidone is related to their metabolic side effects. We, therefore, examined the relationship between TaqIA polymorphism of the DRD2 gene and acute risperidone-induced metabolic changes. We recruited 153 newly diagnosed patients with psychotic disorders (71 males and 82 females) from the Federal Neuropsychiatric Hospital, Yaba, Lagos, Nigeria.
View Article and Find Full Text PDFJ Hazard Mater
March 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address:
The tetracycline resistance gene tetA is a widely detected antibiotic resistance gene (ARG) posing significant ecological health risks in surface water. The development of rapid quantitative assays for tetA can substantially reduce both the time and economic costs associated with real-time monitoring of tetA transportation dynamics in the environment. In this study, a novel method for the quantification of tetracycline resistance gene tetA using real-time recombinase polymerase amplification was developed, which can complete the quantification of tetA within 20 minutes at a constant temperature of 39 ℃, achieving a detection limit of 50 copies/μL with 100 % sensitivity and specificity.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.