Sustainable visions: unsupervised machine learning insights on global development goals.

PLoS One

Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.

Published: March 2025

The 2030 Agenda for Sustainable Development of the United Nations outlines 17 goals for countries of the world to address global challenges in their development. However, the progress of countries towards these goal has been slower than expected and, consequently, there is a need to investigate the reasons behind this fact. In this study, we have used a novel data-driven methodology to analyze time-series data for over 20 years (2000-2022) from 107 countries using unsupervised machine learning (ML) techniques. Our analysis reveals strong positive and negative correlations between certain SDGs (Sustainable Development Goals). Our findings show that progress toward the SDGs is heavily influenced by geographical, cultural and socioeconomic factors, with no country on track to achieve all the goals by 2030. This highlights the need for a region-specific, systemic approach to sustainable development that acknowledges the complex interdependencies between the goals and the variable capacities of countries to reach them. For this our machine learning based approach provides a robust framework for developing efficient and data-informed strategies to promote cooperative and targeted initiatives for sustainable progress.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317412PLOS

Publication Analysis

Top Keywords

machine learning
12
sustainable development
12
unsupervised machine
8
development goals
8
goals 2030
8
sustainable
5
development
5
goals
5
sustainable visions
4
visions unsupervised
4

Similar Publications

Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!