Prostate cancer has garnered much importance in recent years due to its rising incidence and mortality among men worldwide. The ineffectiveness of existing therapies and adverse events associated with conventional treatment have led patients to turn towards traditional medicine for the management of prostate cancer. Cinnamomum zeylanicum bark essential oil (CZEO) possesses promising anticancer properties, yet the exact mechanism of action of CZEO for the management of prostate cancer remains unclear. Therefore, the current study tried to elucidate the bioactive components and key potential targets through which CZEO may exert its anticancer effect for treating prostate cancer. Fifty-nine constituents were identified by GC-MS, of which 52 were drug-like constituents. A total of 2847 targets related to CZEO and 2283 targets related to prostate cancer were obtained from public databases and the GEO dataset. Twenty-three overlapping targets exist between CZEO and disease targets. Compound-disease-target network analysis revealed camphor, eugenol, methyl eugenol, trans farnesyl acetate and nerol as the core bioactive ingredients of CZEO. The topological screening of the PPI network revealed BCL2, TNF, NFKBIA, CREBBP and IL7R as potential hub targets. These hub targets were validated based on mRNA expression level, pathological stages, overall survival, immune infiltrate and genetic alteration analysis in prostate adenocarcinoma and normal patients. KEGG enrichment analysis proposed that CZEO exhibits its anticancer effect mainly by modulating the PI3-AKT and MAPK signalling pathway. Moreover, molecular docking and dynamics simulation studies revealed a good binding affinity of these core compounds with TNF, NFKBIA and BCL2. CZEO exhibited a remarkable anti-proliferative effect against PC-3 cells with an IC value of 13.56 µg/mL. CZEO promoted apoptosis and cell cycle arrest in the G2/M phase in PC-3 cells. CZEO-induced apoptosis was due to loss of mitochondrial membrane potential, increase in reactive oxygen species levels and activation of caspases (caspase 3, caspase 8 and caspase 9). RT-qPCR analysis revealed that CZEO modulated the mRNA expression level of hub genes (BCL2, TNF, NFKBIA, CREBBP, and IL7R, caspase 3, caspase 8 and caspase 9). The present study provides a mechanistic approach of Cinnamomum zeylanicum essential oil against prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-025-02665-wDOI Listing

Publication Analysis

Top Keywords

prostate cancer
28
caspase caspase
16
cinnamomum zeylanicum
12
essential oil
12
tnf nfkbia
12
czeo
10
zeylanicum essential
8
prostate
8
oil prostate
8
management prostate
8

Similar Publications

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

Hereditary breast and ovarian cancer syndrome (HBOC) is traditionally associated with mutations in the BRCA1 and BRCA2 genes, predominantly impacting breast, ovarian, pancreatic, and prostate cancers. However, recent research suggests that these mutations may also predispose carriers to a broader spectrum of malignancies, including biliary tract, cervical, colorectal, endometrial, esophageal, and gastric cancers. This review presents findings from extensive datasets, including a significant study from a nationwide Japanese biobank that examined cancer risks in 63,828 patients and 37,086 controls.

View Article and Find Full Text PDF

Next generation of porphysomes for improved photodynamic therapy applications.

J Control Release

March 2025

Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France. Electronic address:

Porphysomes are a class of liposome-like nanoparticles that have demonstrated efficacy in photothermal therapy (PTT) and photodynamic therapy (PDT) against cancer. These nanoparticles results from the self-assembly of amphiphilic phospholipid-porphyrin (PL-Por) conjugates. Despite their potential, porphysomes exhibit a high photothermal effect and a weak photodynamic activity as long as they remain intact within the body.

View Article and Find Full Text PDF

The patient was a 51-year-old man who was diagnosed as having prostate cancer(adenocarcinoma)in December Year X-3. He underwent total prostatectomy in June Year X-2. The lesions were confined to the right lobe of the prostate.

View Article and Find Full Text PDF

The contribution of coding variants to the heritability of multiple cancer types using UK Biobank whole-exome sequencing data.

Am J Hum Genet

March 2025

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

Genome-wide association studies have been highly successful at identifying common variants associated with cancer; however, they do not explain all the inherited risks of cancer. Family-based studies, targeted sequencing, and, more recently, exome-wide association studies have identified rare coding variants in some genes associated with cancer risk, but the overall contribution of these variants to the heritability of cancer is less clear. Here, we describe a method to estimate the genome-wide contribution of rare coding variants to heritability that fits models to the burden effect sizes using an empirical Bayesian approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!