Background: Thyroid cancer is a prevalent malignant tumor, especially with a higher incidence in women. Tumor microenvironment changes induced by inflammation and alterations in metabolic characteristics are critical in the development of thyroid cancer. Nevertheless, their causal relationships remain unclear.

Methods: We utilized thyroid cancer GWAS data from the Global Biobank Meta-Analysis Initiative and GWAS data of 91 inflammatory cytokines and 1400 blood metabolites obtained from the GWAS Catalog to evaluate the causality between inflammatory cytokines, blood metabolites, and thyroid cancer using Mendelian randomization (MR). Initially, we identified inflammatory cytokines having a significant causal effect on thyroid cancer. Subsequently, for the identified positive blood metabolites, we applied a two-step mediation MR method to examine their mediating role in the causal effect of specific inflammatory cytokines on thyroid cancer.

Results: Our forward MR analysis identified suggestive associations between 7 inflammatory cytokines and thyroid cancer risks, and found that tumor necrosis factor ligand superfamily member 14 (TNFSF14) (IVW-OR: 1.25, 95% CI 1.10-1.42, p = 0.0004) is a significant risk factor in thyroid cancer, and this causal relationship remained significant after Bonferroni correction. The reverse MR analysis identified suggestive causal associations between thyroid cancer and 3 inflammatory cytokines and ruled out the reverse causality between TNFSF14 and thyroid cancer. Then, we identified suggestive associations between 35 blood metabolites and 24 blood metabolite ratios with thyroid cancer, and found that 5-hydroxymethyl-2-furoylcarnitine (IVW-OR: 1.38, 95% CI 1.19-1.61, p = 0.00003) is a significant risk factor for thyroid cancer, with this causality remaining significant after Bonferroni correction. Finally, our two-step MR analysis indicated that Lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) and X-12013 have a mediating effect in the causal relationship between TNFSF14 and thyroid cancer, with mediation proportions of 8.55% and 5.78%, respectively. Our MR analysis did not identify significant heterogeneity or horizontal pleiotropy.

Conclusion: This study identified some inflammatory cytokines and blood metabolites associated with thyroid cancer risk and revealed the mediating role of specific blood metabolites between TNFSF14 and thyroid cancer, highlighting the critical role of inflammatory and metabolic pathways in the pathogenesis of thyroid cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12672-025-02029-wDOI Listing

Publication Analysis

Top Keywords

thyroid cancer
64
inflammatory cytokines
32
blood metabolites
28
thyroid
17
cancer
16
cytokines blood
12
identified suggestive
12
tnfsf14 thyroid
12
inflammatory
9
causal relationships
8

Similar Publications

Ocular motor cranial neuropathy and risk of thyroid cancer: A Korean population-based study.

PLoS One

March 2025

Department of Ophthalmology, Hallym University School of Medicine, Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea.

This study investigates whether ocular motor cranial neuropathy (OMCN) can predict the onset of thyroid cancer given its association with common cardiovascular risk factors including obesity, diabetes mellitus (DM), hypertension, and dyslipidemia. We conducted a retrospective, nationwide, population-based cohort study utilizing data from the Korean National Health Insurance Service. Individuals comprised those aged ≥ 20 years diagnosed with OMCN between 2010 and 2017.

View Article and Find Full Text PDF

SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.

Biochem Genet

March 2025

Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.

Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.

View Article and Find Full Text PDF

Background: Thyroid cancer is a prevalent malignant tumor, especially with a higher incidence in women. Tumor microenvironment changes induced by inflammation and alterations in metabolic characteristics are critical in the development of thyroid cancer. Nevertheless, their causal relationships remain unclear.

View Article and Find Full Text PDF

This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion.

View Article and Find Full Text PDF

Validation of Diagnostic Utility of Washout CYFRA 21-1 in Lymph Node Metastasis of Thyroid Cancer.

Clin Cancer Res

March 2025

Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea, Seoul, Korea (South), Republic of.

Purpose: Traditional methods, fine-needle aspiration cytology (FNAC) and washout thyroglobulin (Tg), do not always provide sufficient accuracy for diagnosing lymph node (LN) metastasis in thyroid cancer. This study aimed to validate the diagnostic performance of washout cytokeratin fragment 21-1 (CYFRA 21-1) as a complementary biomarker for diagnosing metastatic LNs in thyroid cancer and to explore its relationship with molecular analysis and distant metastasis.

Patients And Methods: In this retrospective cohort study involving 230 LNs in 224 patients with PTC, FNAC, washout Tg, and CYFRA 21-1 levels were measured in suspicious LNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!