Context: Malaria and cancer tend to become drug-resistant a few years after a drug is introduced into clinical use. This prompts the search for new molecular structures that are sufficiently different from the drugs for which resistance has developed. The present work considers eight selected acylphloroglucinols (ACPLs) with proven antimalarial and/or anticancer activities. ACPLs are compounds of natural origin structurally derivative from 1,3,5-trihydroxybenzene and characterized by the presence of an acyl group R-C = O. The selected ACPLs contain only one acylphloroglucinol moiety and are, therefore, monomeric ACPLs (also occasionally called "simple" ACPLs). They were studied computationally in vacuo and in-three-solvents with different polarities, using different levels of theory. The findings on molecular properties relevant to the understanding of biological activities align with previous studies, enhancing the reliability of predictions for molecules of the same class and providing insights into their behaviour in different environments. Structure-based virtual screening was used to study the interactions between these molecules and selected proteins known as relevant drug targets for antimalarial and anticancer activities; the screening showed that most of these ACPLs bind well with the selected proteins, thus being interesting for further studies. The results also suggest that most of these ACPLs have the potential for dual therapeutic applications (antimalarial and anticancer), offering a cost-effective drug development option. Furthermore, the ADME-T predictions indicated favourable pharmacokinetic properties for these ACPLs.
Methods: Computational studies of the selected ACPLs were performed using Gaussian-09, in vacuo and in-three-solvents with different polarities. Three different levels of theory were used - Hartree Fock (HF), Density Functional Theory (DFT) with the B3LYP functional, and second order Møller-Plesset Perturbation Theory (MP2). HF and MP2 used a 6-31G(d,p) basis set, while DFT used a 6-31G + (d,p), for consistency with previous studies on ACPLs. The investigated molecular properties include conformational preferences, intramolecular hydrogen bonding patterns, HOMO-LUMO energy gap, dipole moments, as well as the solvent effect for the three considered solvents. Virtual screening was conducted using the Schrödinger suite, including Maestro 9.3 with GLIDE for docking and GlideScore for evaluating binding affinities. In addition, the QikProp tool provided ADME-T predictions for pharmacokinetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-025-06299-7 | DOI Listing |
J Mol Model
March 2025
Faculty of Science, Engineering and Agriculture, University of Venda, University Road, Thohoyandou, 0950, South Africa.
Context: Malaria and cancer tend to become drug-resistant a few years after a drug is introduced into clinical use. This prompts the search for new molecular structures that are sufficiently different from the drugs for which resistance has developed. The present work considers eight selected acylphloroglucinols (ACPLs) with proven antimalarial and/or anticancer activities.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2023
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia.
With the rapid spread of multi-drug-resistant bacteria and more infectious or aggressive variants of SARS-CoV-2, it is critical to develop drugs that can quickly adapt to evolving bacterial and viral mutations. In this study, encouraged by nature, we synthesized a series of phloroglucinol (PG) derivatives, acyl phloroglucinols (ACPLs) - by mimicking the structure of the natural antifungal 2,4-diacetylphloroglucinol (2,4-DAPG). According to the quantum chemical calculation, these compounds were expected to be exceptionally favourable for intermolecular interaction with protein receptors.
View Article and Find Full Text PDFJ Neuroimmunol
April 2000
Department of Radiology, Stanford University School of Medicine, Lucas MRS Research Center, Stanford, CA 94305-5429, USA.
The expression of leukocyte adhesion molecules in the intact brains of mice with experimental autoimmune encephalitis (EAE) was visualized by Magnetic Resonance Imaging (MRI) through the use of a new, target-specific MR contrast agent. Antibody-conjugated paramagnetic liposomes (ACPLs) were designed to achieve in vivo targeting of molecules expressed on vascular endothelium, while providing sufficient signal enhancement at these sites for detection by MRI. ACPLs targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial leukocyte receptor upregulated on cerebral microvasculature during EAE, were administered to diseased mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!